làm hộ bài này Cho 2 số thực dương x,y. Tìm giá trị nhỏ nhất của biểu thức P=căn[x^3/(x^3+8y^3)]+căn{4y^3/[y^3+(x+y)^3]}
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
13 tháng 2 2016
\(\sqrt{\frac{x^3}{x^3+8}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
NT
18 tháng 2 2016
- ta có \(\sqrt{\frac{x^3}{x^3+8y^3}}\)>=0 =>y=<0
thay vô P
- ta lại có \(\sqrt{\frac{x^3}{y^3+\left(x+y\right)^3}}\)>=0
thay vô P
- sau khi thay vô thấy P nào nhỏ hơn là min
TN
18 tháng 9 2016
Bài 1: \(T=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
\(=\frac{x^2}{\sqrt{x\left(x^3+8y^3\right)}}+\frac{2y^2}{\sqrt{y\left[y^3+\left(x+y\right)^3\right]}}\)
\(=\frac{x^2}{\sqrt{\left(x^2+2xy\right)\left(x^2-2xy+4y^2\right)}}+\frac{2y^2}{\sqrt{\left(xy+2y^2\right)\left(x^2+xy+y^2\right)}}\)
\(\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2y^2+\left(x+y\right)^2}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow T\ge1\)
Bài 2:
[Toán 10] Bất đẳng thức | Page 5 | HOCMAI Forum - Cộng đồng học sinh Việt Nam