K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2015

Đặt A=x^2-6xy+13y^2=100

Biến đổi A ta được  A=(x-3y)^2 + (2y)^2 =100

Do 100=6^2 + 8^2 suy ra hoặc x-3y =6 và 2y = 8 hoặc x-3y=8 và 2y=6

giải ra ta được (x;y)={(18;4);(17;3)}

22 tháng 3 2015

Đặt A=1-3x-2x^2 =-(2x^2+3X-1)

biến đổi A ta được A= -1/2 - 2(x+3/2)   =< -1/2

Dấu = xảy ra <=> x=-3/2

        Vậy biểu thức có giá trị lớn nhất là -1/2 <=> x=-3/2

8 tháng 8 2019

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

15 tháng 2 2018

Đáp án C

G T ⇔ x 2 + y − 3 x + y 2 − 4 y + 4 = 0 y 2 + x − 4 y + x 2 − 3 x + 4 = 0

có nghiệm  ⇔ Δ x ≥ 0 Δ y ≥ 0 ⇔ 0 ≤ x ≤ 4 3 1 ≤ y ≤ 7 3

Và:

x y = 3 x + 4 y − x 2 − y 2 − 4 ⇒ P = 3 x 3 + 18 x 2 + 45 x − 8 ⏟ f x + − 3 y 3 + 3 y 2 + 8 y ⏟ g y

 Xét hàm số f x = 3 x 3 + 18 x 2 + 45 x − 8 trên  0 ; 4 3 ⇒ max 0 ; 4 3 f x = f 4 3 = 820 9

Xét hàm số g x = − 3 y 3 + 3 y 2 + 8 y trên  1 ; 7 3 ⇒ max 1 ; 7 3 g x = f 4 3 = 80 9

Vật P ≤ max 0 ; 4 3 f x + max 1 ; 7 3 g x = 100

Dấu “=” xảy ra khi  x = y = 4 3

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

NV
22 tháng 12 2020

Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)

Từ giả thiết ta có:

\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)

\(\Leftrightarrow2x+y=2\)

Do đó:

\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)

\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)

\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)

22 tháng 9 2019

Áp dụng bất đẳng thức Cosi ta có:

1 32 32 x 29 x + 3 y  ≤  1 4 2 32 x + 29 x + 3 y 2 = 1 8 2 61 x + 3 y

Tương tự

1 32 32 y 29 y + 3 x  ≤  1 8 2 61 y + 3 x

=> P ≤  4 2 x + y  ≤  4 2 x 2 + 1 2 + y 2 + 1 2 = 8 2

Vậy P min =  8 2 <=> x = y = 1

NV
28 tháng 12 2020

Không nhìn thấy bất cứ chữ nào của đề bài cả 

AH
Akai Haruma
Giáo viên
30 tháng 10 2023

Lời giải:

Áp dụng BĐT Bunhiacopxky:

$P^2\leq (x+y)[(29x+3y)+(29y+3x)]=32(x+y)^2\leq 32.(x^2+y^2)(1+1)=64(x^2+y^2)\leq 64.2=128$

$\Rightarrow P\leq 8\sqrt{2}$
Vậy $P_{\max}=8\sqrt{2}$