Cho dãy số \(1\frac{1}{3};1\frac{1}{8};1\frac{1}{15};1\frac{1}{24};1\frac{1}{35};...\)Tích của 2015 số hạng đầu tiên của dãy là...
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy dãy số \(\left( {{u_n}} \right)\) là một cấp số nhân có số hạng đầu \({u_1} = \frac{1}{3}\) và công bội \(q = \frac{1}{3}\).
Số hạng tổng quát của dãy số là: \({u_n} = {u_1}.{q^{n - 1}} = \frac{1}{3}.{\left( {\frac{1}{3}} \right)^{n - 1}} = {\left( {\frac{1}{3}} \right)^n} = \frac{1}{{{3^n}}}\).
Chọn C.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)
\(\Rightarrow B\)
Bạn tham khảo nhé ! Mk ko có thời gian nha !
a, Ở đây ta dễ thấy quy luật như sau :
Tử số : Nhóm 1: 1 - Nhóm 2: 1,2 - Nhóm 3 : 1 , 2 , 3 - Nhóm 4: 1 , 2 , 3 , 4 - Nhóm 5: 1 , 2 , 3 , 4 , 5 - .......
Mẫu số : Nhóm 1: 1 - Nhóm 2: 2 , 1 - Nhóm 3: 3 , 2 , 1 - Nhóm 4: 4 ; 3 ; 2 ; 1 - Nhóm 5: 5 ; 4 ; 3 ; 2 ; 1 - ......
Vậy 5 phân số tiếp theo thuộc 5 nhóm lần lượt là : 1/5 ; 2/4 ; 3/3 ; 4/2 5/1
b, 26/7 có tử số là 26 và mẫu số là 7 vậy nó thuộc nhóm thứ 33 của dãy số , và đứng thứ 26 .
Số các phân số từ nhóm 1 đến 32 là :
1 + 2 + 3 + .... + 32 = 528
Vậy 26/7 đứng thứ :
528 + 26 = 554 .
Đáp số : ...... ( tự vt )
k mk nha Nguyễn Văn Cường
Dễ dàng nhận thấy dãy số từ 1/3; 1/6... đến n=9 là một cấp số nhân có tổng Sn=1/3x((1/2^9)-1)/(1/2-1)=511/768
Vậy tổng của 10 số hạng đầu tiên của dãy số là: 1+ 511/768=1279/768
Ta thấy: \(1\frac{1}{3}=\frac{4}{3}=\frac{2.2}{1.3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3.3}{2.4}\)
\(1\frac{1}{15}=\frac{16}{15}=\frac{4.4}{3.5}\)
\(...\)
\(1=\frac{4064256}{4064255}=\frac{2016.2016}{2015.2017}\)
Tích 2015 số đầu tiên của dãy là:
\(\frac{2.2}{1.3}.\frac{3.3}{2.4}...\frac{2016.2016}{2015.2017}\)
\(=\frac{2.2.3.3...2016.2016}{1.3.2.4...2015.2017}\)
Thấy tử và mẫu có 1 số thừa số chung nên ta rút gọn là:
=2.
2.3.3...2016.2016/1.3.2.4...2015.2017=2/2017
Ta có:\(1\frac{1}{3}=\frac{4}{3}\frac{2,2}{1,3}\)
\(1\frac{1}{8}=\frac{9}{8}=\frac{3,3}{2,4}\)
\(1\frac{1}{15}=\frac{10}{15}=\frac{4,4}{3,5}\)
\(1\frac{4064256}{4064256}=\frac{2016,2016}{2015,2017}\)
Tích 2015 số đầu tiên của số là:
\(\frac{2,2}{1,3},\frac{3,3}{2,4}......\frac{2016,2016}{2015,2017}\)
\(=\frac{2,2,3,3.....2016,2016}{2,3,2,4.....2015,2017}\)
Thấy tử và mẫu
có một thừa số chung nên ta rút gọn là:
=2/2017