\((\sqrt(x-5))/(\sqrt(x+3))= (3)/(8)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
6:ĐKXĐ: x>=0; x<>1/25
BPT=>\(\dfrac{3\sqrt{x}}{5\sqrt{x}-1}+3< =0\)
=>\(\dfrac{3\sqrt{x}+15\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{18\sqrt{x}-5}{5\sqrt{x}-1}< =0\)
=>\(\dfrac{1}{5}< \sqrt{x}< =\dfrac{5}{18}\)
=>\(\dfrac{1}{25}< x< =\dfrac{25}{324}\)
7:
ĐKXĐ: x>=0
BPT \(\Leftrightarrow\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}>\dfrac{8}{3}:\dfrac{8}{3}=1\)
=>\(\dfrac{\sqrt{x}+1}{2\sqrt{x}+3}-1>=0\)
=>\(\dfrac{\sqrt{x}+1-2\sqrt{x}-3}{2\sqrt{x}+3}>=0\)
=>\(-\sqrt{x}-2>=0\)(vô lý)
8:
ĐKXĐ: x>=0; x<>9/4
BPT \(\Leftrightarrow\dfrac{\sqrt{x}-2}{2\sqrt{x}-3}+4< 0\)
=>\(\dfrac{\sqrt{x}-2+8\sqrt{x}-12}{2\sqrt{x}-3}< 0\)
=>\(\dfrac{9\sqrt{x}-14}{2\sqrt{x}-3}< 0\)
TH1: 9căn x-14>0 và 2căn x-3<0
=>căn x>14/9 và căn x<3/2
=>14/9<căn x<3/2
=>196/81<x<9/4
TH2: 9căn x-14<0 và 2căn x-3>0
=>căn x>3/2 hoặc căn x<14/9
mà 3/2<14/9
nên trường hợp này Loại
9:
ĐKXĐ: x>=0
\(BPT\Leftrightarrow\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}< =-\dfrac{1}{3}\)
=>\(\dfrac{2\sqrt{x}+3}{5\sqrt{x}+7}+\dfrac{1}{3}< =0\)
=>\(\dfrac{6\sqrt{x}+9+5\sqrt{x}+7}{3\left(5\sqrt{x}+7\right)}< =0\)
=>\(\dfrac{11\sqrt{x}+16}{3\left(5\sqrt{x}+7\right)}< =0\)(vô lý)
10:
ĐKXĐ: x>=0; x<>1/49
\(BPT\Leftrightarrow\dfrac{6\sqrt{x}-2}{7\sqrt{x}-1}+6>0\)
=>\(\dfrac{6\sqrt{x}-2+42\sqrt{x}-6}{7\sqrt{x}-1}>0\)
=>\(\dfrac{48\sqrt{x}-8}{7\sqrt{x}-1}>0\)
=>\(\dfrac{6\sqrt{x}-1}{7\sqrt{x}-1}>0\)
TH1: 6căn x-1>0 và 7căn x-1>0
=>căn x>1/6 và căn x>1/7
=>căn x>1/6
=>x>1/36
TH2: 6căn x-1<0 và 7căn x-1<0
=>căn x<1/6 và căn x<1/7
=>căn x<1/7
=>0<=x<1/49
Sửa đề: \(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)
Ta có: \(\dfrac{8\sqrt{x}-x-31}{x-8\sqrt{x}+15}-\dfrac{\sqrt{x}+5}{\sqrt{x}-3}-\dfrac{3\sqrt{x}-1}{5-\sqrt{x}}\)
\(=\dfrac{-x+8\sqrt{x}-31}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}-\dfrac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}+\dfrac{\left(3\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{-x+8\sqrt{x}-31-\left(x-25\right)+3x-9\sqrt{x}-\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{2x-2\sqrt{x}-28-x+25}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-2\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{x-3\sqrt{x}+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-5\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-5}\)
a/ ĐKXĐ: ...
\(\Leftrightarrow x+8+\sqrt{x+8}-\left(x+8\right)=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow\sqrt{x+8}=\sqrt{x}+\sqrt{x+3}\)
\(\Leftrightarrow x+8=2x+3+2\sqrt{x^2+3x}\)
\(\Leftrightarrow5-x=2\sqrt{x^2+3x}\) (\(x\le5\))
\(\Leftrightarrow x^2-10x+25=4\left(x^2+3x\right)\)
\(\Leftrightarrow...\)
b/ ĐKXĐ: \(2\le x\le5\)
\(\Leftrightarrow2\left(x-2\right)+\sqrt{2\left(x-2\right)}\left(\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\sqrt{2\left(x-2\right)}\left(\sqrt{2x-4}+\sqrt{5-x}-\sqrt{3x-3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\\sqrt{2x-4}+\sqrt{5-x}=\sqrt{3x-3}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x+1+2\sqrt{\left(2x-4\right)\left(5-x\right)}=3x-3\)
\(\Leftrightarrow\sqrt{\left(2x-4\right)\left(5-x\right)}=x-2\)
\(\Leftrightarrow\left(2x-4\right)\left(5-x\right)=\left(x-2\right)^2\)
\(\Leftrightarrow...\)
c/ ĐKXĐ: \(x\le12\)
\(\Leftrightarrow\sqrt[3]{24+x}\sqrt{12-x}-6\sqrt{12-x}+12-x=0\)
\(\Leftrightarrow\sqrt{12-x}\left(\sqrt[3]{24+x}-6+\sqrt{12-x}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=12\\\sqrt[3]{24+x}+\sqrt{12-x}=6\left(1\right)\end{matrix}\right.\)
Xét (1):
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a+b=6\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=6-a\\a^3+b^2=36\end{matrix}\right.\)
\(\Leftrightarrow a^3+\left(6-a\right)^2=36\)
\(\Leftrightarrow a^3+a^2-12a=0\)
\(\Leftrightarrow a\left(a^2+a-12\right)=0\Rightarrow\left[{}\begin{matrix}a=0\\a=3\\a=-4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[3]{24+x}=0\\\sqrt[3]{24+x}=3\\\sqrt[3]{24+x}=-4\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}24+x=0\\24+x=27\\24+x=-64\end{matrix}\right.\)
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{9\left(x-2\right)^2}=18\)
=>\(\sqrt{9}\cdot\sqrt{\left(x-2\right)^2}=18\)
=>\(3\cdot\left|x-2\right|=18\)
=>\(\left|x-2\right|=6\)
=>\(\left[{}\begin{matrix}x-2=6\\x-2=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
c: ĐKXĐ: x>=2
\(\sqrt{9x-18}-\sqrt{4x-8}+3\sqrt{x-2}=40\)
=>\(3\sqrt{x-2}-2\sqrt{x-2}+3\sqrt{x-2}=40\)
=>\(4\sqrt{x-2}=40\)
=>\(\sqrt{x-2}=10\)
=>x-2=100
=>x=102(nhận)
d: ĐKXĐ: \(x\in R\)
\(\sqrt{4\left(x-3\right)^2}=8\)
=>\(\sqrt{\left(2x-6\right)^2}=8\)
=>|2x-6|=8
=>\(\left[{}\begin{matrix}2x-6=8\\2x-6=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=14\\2x=-2\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=7\left(nhận\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
e: ĐKXĐ: \(x\in R\)
\(\sqrt{4x^2+12x+9}=5\)
=>\(\sqrt{\left(2x\right)^2+2\cdot2x\cdot3+3^2}=5\)
=>\(\sqrt{\left(2x+3\right)^2}=5\)
=>|2x+3|=5
=>\(\left[{}\begin{matrix}2x+3=5\\2x+3=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=2\\2x=-8\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-4\left(nhận\right)\end{matrix}\right.\)
f: ĐKXĐ:x>=6/5
\(\sqrt{5x-6}-3=0\)
=>\(\sqrt{5x-6}=3\)
=>\(5x-6=3^2=9\)
=>5x=6+9=15
=>x=15/5=3(nhận)
a. ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow -5x-5\sqrt{x}+12\sqrt{x}+12=0$
$\Leftrightarrow -5\sqrt{x}(\sqrt{x}+1)+12(\sqrt{x}+1)=0$
$\Leftrightarrow (\sqrt{x}+1)(12-5\sqrt{x})=0$
Dễ thấy $\sqrt{x}+1>1$ với mọi $x\geq 0$ nên $12-5\sqrt{x}=0$
$\Leftrightarrow \sqrt{x}=\frac{12}{5}$
$\Leftrightarrow x=5,76$ (thỏa mãn)
b. ĐKXĐ: $x^2\geq 5$
PT $\Leftrightarrow \frac{1}{3}\sqrt{4}.\sqrt{x^2-5}+2\sqrt{\frac{1}{9}}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow \frac{2}{3}\sqrt{x^2-5}+\frac{2}{3}\sqrt{x^2-5}-3\sqrt{x^2-5}=0$
$\Leftrightarrow -\frac{5}{3}\sqrt{x^2-5}=0$
$\Leftrightarrow \sqrt{x^2-5}=0$
$\Leftrightarrow x=\pm \sqrt{5}$