K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2016
Bạn ơi, đây là cách giải của mình, có gì sai sót bạn bỏ qua nhé ^^. Ta có A bình+ B bình +C bình lớn hơn hoạc = ab+ac+bc <=> A+B+C tất cả bình lớn hơn hoặc bằng 3(ab+bc+ac) tức là lớn hơn hoặc bằng 3 <=> a+b+c+3 nhỏ hơn hoặc bằng 2(a+b+c). Mà A bình +1 nhỏ hơn hoặc bằng (a+1) tất cả bình nên căn A bình +1 nhỏ hơn hoặc = A+1. Tương tự như thế thì có thể giải dc bài toán
16 tháng 5 2021

\(a)\)

\(\frac{x^2+y^2+5}{2}\ge x+2y\)

\(\rightarrow\frac{x^2+y^2+5}{2}-x-2y\ge0\)

\(\rightarrow\frac{x^2+y^2-2x-4y+5}{2}\ge0\)

\(\rightarrow\frac{\left(x^2-2x+1\right)+\left(y^2-4y+4\right)}{2}\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

\(\rightarrow\hept{\begin{cases}\left(x-1\right)^2\ge0\\\left(y-2\right)^2\ge0\end{cases}}\)

\(\rightarrow\left(x-1\right)^2+\left(y-2\right)^2\ge0\)

\(\rightarrow\frac{\left(x-1\right)^2+\left(y-2\right)^2}{2}\ge0\)

16 tháng 5 2021

b)

Áp dụng bất đẳng thức dạng 1/a + 1/b + 4 / a+b

-> 1/a+1 + 1/b+1 ≥ 4/a+b+1+1

Mà ta có: a+b=1

-> 1/a+1 + 1/b+1 ≥ 4/1+1+1 = 4/3

26 tháng 11 2017

\(\Leftrightarrow a^2+b^2\ge\dfrac{\left(a+b\right)^2}{2}\)

\(\Leftrightarrow2a^2+2b^2\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2-2ab\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\)(luôn đúng)

Vì (a-b)2\(\ge\)0 luôn đúng nên \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)

14 tháng 6 2017

với a > 0 và a khác 0. Ta có :

       \(\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{1-a\sqrt{a}+\sqrt{a}-a}{1-\sqrt{a}}\left(\frac{1-\sqrt{a}}{1-a}\right)^2=1\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}\left(1-a\right)\left(1-a\right)}{1-\sqrt{a}}.\frac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1+\sqrt{a}\right).\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}=1\)

\(\Leftrightarrow\)\(\frac{\left(1-a\right)\left(1-a\right)}{\left(1-a\right)^2}=1\)

năm nay em lên lớp 9 anh xem xét bài em nha!!! ^.^

Dùng tính chất phân phối 

Tách  vế trái ra rồi chứng minh :

Tổng vế trái bằng 1 

Với a lớn hơn hoặc bằng 0 ; a khác 1 đó là điều kiện để phân thức tồn tại thôi