tìm số nguyên n :7n +6 chia hết cho n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2n + 5) ⋮ (7n + 1)
⇒ 7(2n + 5) ⋮ (7n + 1)
⇒ (14n + 35) ⋮ (7n + 1)
⇒ (14n + 2 + 33) ⋮ (7n + 1)
⇒ [2(7n + 1) + 33] (7n + 1)
⇒ 33 ⋮ (7n + 1)
⇒ 7n + 1 ∈ Ư(33) = {-33; -11; -3; -1; 1; 3; 11; 33}
⇒ 7n ∈ {-34; -12; -4; -2; 0; 2; 10; 32}
⇒ n ∈ {-34/7; -12/7; -4/7; -2/7; 0; 2/7; 10/7; 32/7}
Mà n là số nguyên
⇒ n = 0
a) 7n chia hết cho n+4
=> 7(n+4) -28 chia hết cho n+4
=> 28 chia hết cho n+4 ( Vì : 7(n+4) chia hết cho n+4 với mọi STN n )
=> n+4 thuộc Ư(27)= { \(\pm1;\pm3;\pm9;\pm27\) }
Đến đây bạn lập bảng gt rồi tìm ra x nhé.
b) n^2 + 2n + 6 chia hết cho n +4
=> n(n+4)-2(n+4)+14 chia hết cho n + 4
=> (n+4)(n-2)+14 chia hết cho n + 4
=> 14 chia hết cho n + 4 ( Vì : (n+4)(n-2) chia hết cho n + 4 với mọi STN n )
=> n+4 thuộc Ư(14)= {\(\pm1;\pm2;\pm7;\pm14\)}
Lập bảng giá trị rồi tìm ra x nha bạn
Câu a)
Ta có: \(n\left(n+1\right)=n^2+n\)
TH1: Khi n là số chẵn
Khi n là số chẵn thì \(n^2\)cũng là số chẵn
Suy ra \(n^2+n\)chia hết cho 2
TH2: khi n là số lẻ
Khi n là số lẻ thì \(n^2\)cũng là số lẻ
Suy ra \(n^2+n\)chia hết cho 2
Vậy .................
Cấu dưới tương tự
Làm biếng :3
Vì 7n chia hết cho n => 7n+7 chia hết cho n khi và chỉ khi 7 chia hết cho n
=> n thuộc Ư(7)
=> n thuộc{-7;-1;1;7}
a)
Vì ƯCLN ( 7 ; 8 ) = 1
=> n = B ( 8 ) hoặc n = ..., -8 , 0 , 8 , ....
Có nhiều số lắm, nên mik viết như vậy
b)
Vì 7 là số nguyên tố
=> n = - 7 ; - 1 ; 1 ; 7
c)
Ta có : Ư ( - 7 ) = -7 ; -1 ; 1 ; 7
=> n = -9 ; -3 ; -1 ; 5