Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4c\in B\left(c+3\right)\)
\(\Rightarrow4c⋮c+3\)
mà \(c+3⋮c+3\)
Từ 2 điều trên suy ra:
\(4c-\left(c+3\right)⋮c+3\)
\(=4c-c-3⋮c+3\)
\(=3c-3⋮c+3 \)
\(\Rightarrow3c⋮c+3\)và \(-3⋮c+3\)
\(\Rightarrow c+3\inƯ\left(-3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng:
c+3 | -1 | 1 | -3 | 3 |
c | -4 | -1 | -6 | 0 |
Vậy \(c\in\left\{-6;-4;-1;0\right\}\)
học tốt
7c - 21 chia hết cho c - 2
7c - 14 - 7 chia hết cho c - 2
7. ( c - 2) - 7 chia hết cho c - 2
=> -7 chia hết cho c - 2
=> c - 2 thuộc Ư ( - 7 ) = { 1 ; -1 ; 7 ; -7 }
Xét 4 trường hợp ta có :
\(\hept{\begin{cases}c-2=1\\c-2=-1\end{cases}\Rightarrow\hept{\begin{cases}c=3\\c=1\end{cases}}}\)
\(\hept{\begin{cases}c-2=7\\c-2=-7\end{cases}\Rightarrow\hept{\begin{cases}c=9\\c=-5\end{cases}}}\)
7c - 21 là bội của c - 2
=> 7c - 21 chia hết cho c - 2
=> 7c - 14 - 7 chia hết cho c - 2
=> 7.(c - 2) - 7 chia hết cho c - 2
Do 7.(c - 2) chia hết cho c - 2 => 7 chia hết cho c - 2
=> \(c-2\in\left\{1;-1;7;-7\right\}\)
=> \(c\in\left\{3;1;9;-5\right\}\)
\(\Rightarrow3c+28⋮c+4\Rightarrow\frac{3c+28}{c+4}\)
\(=\frac{3c+12}{c+4}+\frac{16}{c+4}=3+\frac{16}{c+4}\)
\(\Rightarrow16⋮c+4\Rightarrow c+4\varepsilonƯ\left(16\right)=\left\{\pm1,\pm2,\pm4,\pm8,\pm16\right\}\)
Đến đây bn từ từ thử từng trường hợp nhé!! chúc bn hok tốt~~~
Ta có: 6c-26=6(c-3)-8 là bội số của c-3
=> -8 là bội số của c-3 => c-3 là ước của 8
=> \(c\in\left(-5;-1;1;2;4;5;7;13\right)\)
Vì 7a+33 là bội của a+6 nên 7a+33 chia hết cho a+6
Ta có:
7a+33 chia hết cho a+6
7a+42 chia hết cho a+6
7a+42-7a-33=9 chia hết cho a+6
=>\(a+6\in\left\{1;3;9;-1;-3;-9\right\}\)
=>\(a\in\left\{-5;-3;3;-7;-9;-15\right\}\)
\(giai\)
\(\text{c+4 là ước số của 4c+33 }\)
\(\Leftrightarrow4c+33⋮c+4\Leftrightarrow4c+33-4\left(c+4\right)⋮c+4\Leftrightarrow17⋮c+4\)
\(\Leftrightarrow c+4\in\left\{\pm1;\pm17\right\}\Leftrightarrow c\in\left\{-3;-5;-21;13\right\}\)
c + 4 là ước số của 4c + 33
\(\Rightarrow4c+33⋮c+4\)
\(\Rightarrow4c+16+17=c+4\)
\(\Rightarrow4\left(c+4\right)+17⋮c+4\)
Mà : \(4\left(c+4\right)⋮c+4\)suy ra : \(17⋮c+4\)
\(\Rightarrow c+4\inƯ\left(17\right)=\left\{-17;-1;1;17\right\}\)
\(\Rightarrow c\in\left\{-21;-5;-3;13\right\}\)
Ta có: 9m + 5 là bội của m - 1
\(\Rightarrow9m+5⋮m-1\)
\(\Rightarrow9m-9+14⋮m-1\)
\(\Rightarrow9\left(m-1\right)+14⋮m-1\)
\(\Rightarrow14⋮m-1\)
\(\Rightarrow m-1\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
\(\Rightarrow m\in\left\{2;0;3;-1;8;-6;15;-13\right\}\)
( 9m + 5 ) là bội số của ( m - 1 )
=> ( 9m + 5 ) ⋮ ( m - 1 )
=> ( 9m - 9 ) + 14 ⋮ ( m - 1 )
=> 9( m - 1 ) + 14 ⋮ ( m - 1 )
Vì 9( m - 1 ) ⋮ ( m - 1 )
=> 14 ⋮ ( m - 1 )
=> ( m - 1 ) ∈ Ư(14) = { ±1 ; ±2 ; ±7 ; ±14 }
m-1 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
m | 2 | 0 | 3 | -1 | 8 | -6 | 15 | -13 |
Vậy ...
5C - 33 LÀ BỘI SỐ CỦA C - 5
=> 5C - 33 CHIA HẾT CHO C - 5
=> 5C - 35 + 2 CHIA HẾT CHO C - 5
=> 5( C - 5 ) + 2 CHIA HẾT CHO C - 5
=> 2 CHIA HẾT CHO C - 5
tự kẻ bảng xét ước