Tìm x,y để 9x86y chia hết cho 2,3,4,5 và 9
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1.\)
Để \(56x3y⋮2\)thì: \(y=0;2;4;6;8\)
+) Nếu \(y=0\)thì: \(5+6+x+3+0=14+x⋮9\Leftrightarrow x=4\)
+) Nếu \(y=2\)thì: \(5+6+x+3+2=16+x⋮9\Leftrightarrow x=2\)
+) Nếu \(y=4\)thì: \(5+6+x+3+4=18+x⋮9\Leftrightarrow x=0;x=9\)
+) Nếu \(y=6\)thì: \(5+6+x+3+6=20+x⋮9\Leftrightarrow x=7\)
+) Nếu \(y=8\)thì: \(5+6+x+3+8=22+x⋮9\Leftrightarrow x=5\)
\(2.\)
Ta có: \(45=9.5\)
Để: \(71x1y⋮5\)thì: \(y\in\left\{0;5\right\}\)
Ta được: \(71x10;71x15\)
+) Nếu \(y=0\)thì \(71x1y⋮9\Leftrightarrow x\in\left\{0;9\right\}\)
+) Nếu \(y=5\)thì \(71x1y⋮9\Leftrightarrow x=4\)
Vậy với \(x\in\left\{0;9\right\};y=0\)và \(x=4;y=5\)thì \(71x1y⋮45\)
bài 11:
Gọi số phải tìm là: A = 567abc
Do A chia 5 dư 1 mà A lẻ nên c = 1
Tổng các chữ số của A là: 5 + 6 + 7 + a + b + 1 = a + b + 19
Để A chia 9 dư 1 thì a + b = 0 (loại)
a + b = 9
a + b = 18 (loại) (Có 2 chữ số bằng nhau 9 + 9)
Xét a + b = 9, a khác b và khác 5,6,7,1 ==> a = 9, b = 0 ==> A = 567901
==> a = 0, b = 9 ==> A = 567091
ĐS: 3 số phải thêm là: 901 hoặc 091
Câu 1 tương tự câu 2 nhá
1.
để 16xy chia hết cho 2 thì y phải là số chẵn :0;2;4;6;8
để 16xy chia hết ch5 thì y phải là 0 hoặc 5
=> y = 0
ta có số : 16x0
Để 16x0 chia hết cho 9 thì 1+6+0+x phải chia hết 9
hay 7 +x phải chia hết 9
Mà x là chữ số
=> x = 2
x765y chia hết cho 3 và 5
y = 0 => x = 3;6;9
y = 5 => x = 1;4;7
Tìm x và y để số 1996xy chia hết cho 2,5 và 9
giải
A chia hết cho 2 nên y=0 hoặc y=5
mà A chia hết cho 2 nên y=0
ta có: A=1996x0
A chia hết cho 9 nên ta có :
1+9+9+6+x+0=x+25
Vậy x=2 , y=0, A = 199620
Bài 1: y=5; x=5
Bài 2: \(\left(y,x\right)\in\left\{\left(3;4\right);\left(5;2\right);\left(7;0\right);\left(9;7\right)\right\}\)
Bài 3:
a: *=5
b: *=0; *=9
c: *=9
a, Ta có \(1x48y\)chia hết cho 2,5 nên y=0
Ta có \(1+x+4+8+0=13+x⋮3\)
\(\Rightarrow x\in\left\{2,5,8\right\}\)
Vậy \(x=\left\{2,5,8\right\};y=0\)
b Ta có \(1x37y⋮5\) \(\Rightarrow y\in\left\{0,5\right\}\)
TH1: y= 0
Ta có \(1+x+3+7+0=11+x⋮9\) \(\Rightarrow x=7\)
TH2 ; y=5
Ta có \(1+x+3+7+5=16+x⋮9\) \(\Rightarrow x=2\)
Vậy (x,y)= (7,0) ; (2,5)
1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6
Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60
n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)
n chia hết cho 7 => 60k + 1 chia hết cho 7
<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)
<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)
Vậy k nhỏ nhất là 5
Thế vào (*): n = 301 thỏa mãn
2. a) n = 25k - 1 chia hết cho 9
<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)
<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)
Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4
Thế vào trên được n = 99 thỏa mãn
b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21
Vậy không có n thỏa mãn
c) Đặt n = 9k
9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)
<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)
9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)
Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)
<=> a + 1 ≡ 0 (mod 4) (*)
Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn
Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D
1/
\(421x+y=420x+\left(x+y\right)⋮5\)
Ta có \(420x⋮5\Rightarrow x+y⋮5\Rightarrow\left(x+y\right)=\left\{0;5;10;15\right\}\) (1)
\(421x+y⋮3\)
Ta có \(421x⋮3\Rightarrow y⋮3\Rightarrow y=\left\{0;3;6;9\right\}\) (2)
Kết hợp (1) và (2)
+ Với y=0=>x=0
+ Với y=3\(\Rightarrow x=\left\{2;7\right\}\)
+ Với y=6\(\Rightarrow x=\left\{4;9\right\}\)
+ Với y=9\(\Rightarrow x=\left\{1;6\right\}\)
2/
\(\overline{56x3y}⋮9\Rightarrow5+6+x+3+y=9+\left(x+y+5\right)⋮9\)
\(\Rightarrow\left(x+y+5\right)⋮9\Rightarrow\left(x+y\right)=\left\{4;13\right\}\)
Ta có bảng các trường hợp
+ Với x+y=4
x | 0 | 1 | 2 | 3 |
y | 4 | 3 | 2 | 1 |
+ Với x+y=13
x | 4 | 5 | 6 | 7 | 8 | 9 |
y | 9 | 8 | 7 | 6 | 5 | 4 |
1) 134xy chia hết cho 5
=>y=0 hoặc y=5
+)Nếu y=0
=>134xy=134x0
Để 134x0 chia hết cho 9 thì 1+ 3 + 4 + x + 0 = 8 + x chia hết cho 9
=>x=1
+)Nếu y=5
=>134xy=134x5
Để 134x5 chia hết cho 9 thì 1 + 3 + 4 + x + 5 = 13 chia hết cho 9
=>x = 5
Vậy y = 0 thì x = 1 hoặc y = 5 thì x = 5
2) 1x8y2 chia hết cho 4 và 9
1x8y2 chia hết cho 4 <=>y2 chia hết cho 4 <=>y={1;5;9}
y=1=>1x812 chia hết cho 9<=>(1+x+8+1+2) chia hết cho 9
<=>12+x chia hết cho 9 <=>x=6
y=5=>1x852 chia hết cho 9<=>(1+x+8+5+2) chia hết cho 9
<=>16+x chia hết cho 9 <=>x=2
y=9=>1x892 chia hết cho 9<=>(1+x+8+9+2) chia hết cho 9
<=>20+x chia hết cho 9 <=>x=7