2x2 - 3x + 1 \(=0\)
giúp mình câu này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: x^2-7x+13=0
Δ=(-7)^2-4*1*13=49-52=-3<0
=>PTVN
b: -5x^2+5x-1.25=0
=>4x^2-4x+1=0
=>(2x-1)^2=0
=>2x-1=0
=>x=1/2
d: 2x^2+3x+1=0
=>(x+1)(2x+1)=0
=>x=-1 hoặc x=-1/2
\(\Leftrightarrow\)\(x^2\left(y-2\right)+x\left(y-2\right)-x+4=0\)
\(\Leftrightarrow x\left(x+1\right)\left(y-2\right)-\left(x+1\right)=-5\)
\(\Leftrightarrow\left(x+1\right)\left(xy-2x-1\right)=-5\)
\(x;y\in Z\Rightarrow\left\{{}\begin{matrix}x+1\in Z\\xy-2x-1\in Z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1\inƯ\left(-5\right)\\xy-2x-1\inƯ\left(-5\right)\end{matrix}\right.\)
Bạn kẻ bảng sẽ tìm được (x;y) tương ứng
a) \(2x^2-16x=0\)
\(\Rightarrow2x\left(x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
b) \(\left(2x-1\right)^2-25=0\)
\(\Rightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)
\(\Rightarrow4\left(x-3\right)\left(x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(b.\left(2x-1\right)^2-25=0\)
<=>\(\left(2x-1-5\right)\left(2x-1+5\right)=0\)
<=>\(\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.< =>\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)
\(a.2x^2-16x=0< =>2x\left(x-8\right)=0\)
\(< =>\left[{}\begin{matrix}2x=0\\x-8=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
\(a,PT\Leftrightarrow x^2-3x+2+x^2-x\sqrt{3x-2}=0\left(x\ge\dfrac{2}{3}\right)\\ \Leftrightarrow\left(x^2-3x+2\right)+\dfrac{x\left(x^2-3x+2\right)}{x+\sqrt{3x-2}}=0\\ \Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)\left(1+\dfrac{x}{x+\sqrt{3x-2}}\right)=0\)
Vì \(x\ge\dfrac{2}{3}>0\Leftrightarrow1+\dfrac{x}{x+\sqrt{3x-2}}>0\)
Do đó \(x\in\left\{1;2\right\}\)
\(b,ĐK:0\le x\le4\\ PT\Leftrightarrow x+2\sqrt{x}+1=6\sqrt{x}-3-\sqrt{4-x}\\ \Leftrightarrow x-4\sqrt{x}+4=-\sqrt{4-x}\\ \Leftrightarrow\left(\sqrt{x}-2\right)^2=-\sqrt{4-x}\)
Vì \(VT\ge0\ge VP\Leftrightarrow VT=VP=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}-2=0\\\sqrt{4-x}=0\end{matrix}\right.\Leftrightarrow x=4\left(tm\right)\)
Vậy PT có nghiệm \(x=4\)
Câu 2:
\(\left(A\cup B\right)\cap C=A\cap C=[1;+\infty)\cap\left(0;4\right)=[1;4)\)
Tập này có 3 phần tử nguyên
`a)2x^2+3(x-1)(x+1)=5x(x+1)`
`<=>2x^2+3x^2-3=5x^2+5x`
`<=>5x=-3`
`<=>x=-3/5`
__________________________________________
`b)(x-3)^3+3-x=0` nhỉ?
`<=>(x-3)^3-(x-3)=0`
`<=>(x-3)(x^2-1)=0`
`<=>[(x=3),(x^2=1<=>x=+-1):}`
__________________________________________
`c)5x(x-2000)-x+2000=0`
`<=>5x(x-2000)-(x-2000)=0`
`<=>(x-2000)(5x-1)=0`
`<=>[(x=2000),(x=1/5):}`
__________________________________________
`d)3(2x-3)+2(2-x)=-3`
`<=>6x-9+4-2x=-3`
`<=>4x=2`
`<=>x=1/2`
__________________________________________
`e)x+6x^2=0`
`<=>x(1+6x)=0`
`<=>[(x=0),(x=-1/6):}`
\(1,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-3\right)^2-4\left(-2\right)\left(-m+1\right)>0\\x_1+x_2=\dfrac{3}{-2}< 0\\x_1x_2=\dfrac{-m+1}{-2}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}17-8m>0\\-m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{17}{8}\\m>1\end{matrix}\right.\Leftrightarrow1< m< \dfrac{17}{8}\)
\(2,\Leftrightarrow\left\{{}\begin{matrix}\Delta=\left(-4\right)^2-4\left(-3\right)\left(-2m+1\right)\ge0\\x_1+x_2=\dfrac{4}{-3}< 0\\x_1x_2=\dfrac{-2m+1}{-3}>0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}28-24m\ge0\\-2m+1< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\le\dfrac{7}{6}\\m>\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\dfrac{1}{2}< m\le\dfrac{7}{6}\)
\(\Rightarrow2x^2-2x-x+1=0\\ \Rightarrow2x\left(x-1\right)-\left(x-1\right)=0\\ \Rightarrow\left(2x-1\right)\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)