Chứng tỏ rằng hai số lẻ liên tiếp nguyên tố cùng nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
dễ, gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3 (k thuộc N)
gọi d là UCLN(2k+1;2k+3) suy ra:2k+1chia hết cho d;2k+3 chia hết cho d suy ra : (2k+3)-(2k+1) chia hết cho d suy ra: 2 chia hết cho d suy ra d thuộc tập hợp Ư(2) suy ra d thuộc {1;2}
nhưng vì 2k+1;2k+3 là số lẻ nên không chia hết cho 2 suy ra d=1
VẬY:HAI SỐ LẺ LIÊN TIẾP NGUYÊN TỐ CÙNG NHAU
Gọi 2 số tự nhiên lẻ liên tiếp là 2k+1 và 2k+3 và ƯCLN(2k+1;2k+3)=d
\(\Rightarrow\)2k+1 chia hết cho d và 2k+3 chia hết cho d
\(\Rightarrow\)(2k+1) - (2k+3) chia hết cho d
\(\Rightarrow\)2 chia hết cho d \(\Rightarrow\)ƯCLN(2k+1;2k+3) thuộc 1 hoặc 2
Vì 2k+1 và 2k+3 là số lẻ nên d là số lẻ. \(\Rightarrow d=1\)
\(\Rightarrow\)ƯCLN(2k+1;2k+3)=1
Vậy 2 số tự nhiên lẻ liên tiếp là 2 số nguyên tố cùng nhau
gọi 2 số lẻ liên tiếp là 2k+1 và 2k+3
đặt(2k+1,2k+3)=d
ta phải c/m d=1
thật vậy : 2k+1chia hết cho d
2k+3 chia hết cho d
suy ra(2k+3)-(2k+1)chia hết cho d
suy ra:2 chia hết cho d
suy ra: d=1hoặc 2
nhưng d khác 2 vì d là ước của số lẻ
suy ra:d=1
ban chi can tra loi:biet roi thi chung minh lam gi cho met nguoi
Gọi 2 số lẻ liên tiếp là n+1 và n+3
Đặt ƯCLN(n+1,n+3) là d
=> n+1 chia hết cho d
n+3 chia hết cho d
=> (n+3) - (n+1) chia hết cho d
=> n+3 - n - 1 chia hết cho d
=> 2 chia hết cho d
=> d \(\in\){1;2}
Mà n+1 và n+3 là số lẻ nên d \(\ne\)2
=> d = 1
=> ƯCLN(n+1,n+3) = 1
=> n+1 và n+3 là 2 số nguyên tố cùng nhau
Vậy 2 số lẻ liên tiếp 2 số nguyên tố cùng nhau
Chứng tỏ rằng 2 số lẻ liên tiếp bất kì nguyên tố cùng nhau
gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Tham khảo
Câu hỏi của Clean Master - Toán lớp 6 - Học trực tuyến OLM
Tham khảo
https://olm.vn/hoi-dap/detail/6225335775.html