Tìm số nguyên x \(\inℤ\)
x+14\(_⋮\)x+3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
Để M = \(\frac{x+3}{2}\)\(\in\)Z <=> \(x+3⋮2\) <=> \(x+3\in\)B(2) = {0; 2; 4; ....}
<=> \(x\in\){-3; -1; 1; ....}
b) Để N = \(\frac{7}{x-1}\)\(\in\)Z <=> \(7⋮x-1\) <=> \(x-1\in\)Ư(7) = {1; -1; 7; -7}
Lập bảng :
x - 1 | 1 | -1 | 7 | -7 |
x | 2 | 0 | 8 | -6 |
Vậy ...
c) Ta có: P = \(\frac{x-1}{x+1}=\frac{x+1-2}{x+1}=1-\frac{2}{x+1}\)
Để P \(\in\)Z <=> \(2⋮x+1\) <=> \(x+1\in\)Ư(2) = {1; -1; 2; -2}
Lập bảng:
x + 1 | 1 | -1 | 2 | -2 |
x | 0 | -2 | 1 | -3 |
Vậy ...
để M nguyên thì \(\frac{x+3}{2}\) nguyên
=> (x+3) \(\in\)Ư(2)={-2:-1:1:2}
lập bảng ra tìm x nha bn ~!!
mấy ý kia tương tự !
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
M= \(\frac{x^2-5}{x^2-2}\)=\(\frac{x^2-2-3}{x^2-2}\)= 1 - \(\frac{3}{x^2-2}\)
Để M là số nguyên thì ( x2 - 2) phải thuộc Ư(3)={1;3;-1;-3}
Với x2 -2=1 => x2 = 3 ( loại vì x là số nguyên) ; Với x2 -2=3 => x2=5( loại vì x là số nguyên)
Với x2-2=-1 =>x=1 hoặc x=-1(nhận); Với x2 -2=-3 =>x2 =-1( vô lí)
Vậy x=-1 và x=1
Để M là số nguyên thì x bình-5 chia hết cho x bình-2
Ta có:
x bình-5 = x bình-2-3
Vậy:
(x bình-2)-3 sẽ chia hết cho x bình-2
Mà x bình-2 chia hết cho x bình-2 (là sẽ bằng ko?)
Nên -3 sẽ chia hết cho x bình-2
Ư(-3)=-3 ;3;1 ; -1
Suy ra:
x*2 -2 = 1 suy ra x= tập hợp rỗng ( ko tính đc)
x*2-2= -1 suy ra x= 1
x*2-2=3 suy ra x=tập hợp rỗng(ko tính được)
x*2-2=-3 suy ra x=tập hợp rỗng(ko tính được)
Vậy x=1
a) \(\frac{1-x}{x+4}=\frac{5-4-x}{x+4}=\frac{5}{x+4}-1\inℤ\Leftrightarrow\frac{5}{x+4}\inℤ\)
mà \(x\inℤ\Rightarrow x+4\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\)
\(\Leftrightarrow x\in\left\{-9,-5,-3,1\right\}\)
b) \(\frac{11-2x}{x-5}=\frac{1+10-2x}{x-5}=\frac{1}{x-5}-2\inℤ\Leftrightarrow\frac{1}{x-5}\inℤ\)
mà \(x\inℤ\Rightarrow x-5\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{4,6\right\}\)
c) \(\frac{x+1}{2x+1}\inℤ\Rightarrow\frac{2\left(x+1\right)}{2x+1}=\frac{2x+1+1}{2x+1}=1+\frac{1}{2x+1}\inℤ\Leftrightarrow\frac{1}{2x+1}\inℤ\)
mà \(x\inℤ\Rightarrow2x+1\inƯ\left(1\right)=\left\{-1,1\right\}\Leftrightarrow x\in\left\{-1,0\right\}\).
Thử lại đều thỏa mãn.
Mình chả biết có đúng ko nữa nhưng bạn tham khảo nhé mình ko giỏi dạng toán này cho lắm
Ta có :
\(P=\frac{14-x}{4-x}=\frac{4-x+10}{4-x}=\frac{4-x}{4-x}+\frac{10}{4-x}=1+\frac{10}{4-x}\)
Để P đạt GTLN thì \(\frac{10}{4-x}\) phải đạt GTLN hay \(4-x>0\) và đạt GTNN
\(\Rightarrow\)\(4-x=1\)
\(\Rightarrow\)\(x=3\)
Suy ra : \(P=\frac{14-x}{4-x}=\frac{14-3}{4-3}=\frac{11}{1}=11\)
Vậy \(P_{max}=11\) khi \(x=3\)
Đúng thì thôi, sai thì đừng k sai nhé nhắn tin bảo sai là mình biết mình sẽ sửa :)
P=\(\frac{14-x}{4-x}\)=\(\frac{4-x+10}{4-x}\)=1+\(\frac{10}{4-x}\)
Để P có GTLN thì \(\frac{10}{4-x}\)phải có GTLN
suy ra 4-x phải là số dương nhỏ nhất (1)
Vì x nguyên suy ra 4-x nguyên (2)
từ (1) và (2) suy ra 4-x=1 suy ra GTLN của P là 1+10=11 <=> x=3
vậy..................
Ta có: \(A=\frac{\sqrt{x}-2}{\sqrt{x-3}}=\frac{\sqrt{x}-3+1}{\sqrt{x}-3}=1+\frac{1}{\sqrt{x}-3}\)
Để \(A\in Z\)thì \(\frac{1}{\sqrt{x}-3}\in Z\)
=> \(\sqrt{x}-3\inƯ_{\left(1\right)}\)
=>\(\sqrt{x}-3\in\left(1;-1\right)\)
=>\(\sqrt{x}\in\left(4;2\right)\)
=>\(x\in\left(-2;2\right)\)
Vậy...
ta có \(A=\frac{\sqrt{x}-2}{\sqrt{x}-3}=\frac{\left(\sqrt{x}-3\right)+5}{\sqrt{x}-3}=\frac{\sqrt{x}-3}{\sqrt{x}-3}-\frac{5}{\sqrt{x}-3}=1-\frac{5}{\sqrt{x}-3}\)
Vì \(1\inℤ\)nên \(A\inℤ\)thì \(\frac{5}{\sqrt{x}-3}\inℤ\)
\(\Rightarrow\sqrt{x}-3\inƯ_{\left(5\right)}=\left(\pm1;\pm5\right)\)
Bảng
\(\sqrt{x}-3\) | -1 | 1 | -5 | 5 |
\(\sqrt{x}\) | 2(t/m) | 4(t/m) | -2(loại) | 8(t/m) |
VẬy với x=2;x=4;x=8 thì \(A\inℤ\)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
\(x+\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+14\right)=14\)
\(x+x+1+x+2+x+3+...+x+14=14\)
\(15x+\left(1+2+3+...+14\right)=14\)
\(15x+\frac{\left(14+1\right).14}{2}=14\)
\(15x+105=14\)
\(15x=-91\)
\(x=-\frac{91}{15}=-6,06\)
Ko chắc lắm
x+(x+1)+(x+2)+(x+3)+...+(x+13)+(x+14)=14
x+x+1+x+2+x+3+...+x+13+x+14=14
(x+x+x+x+...+x+x)+(1+2+3+...+14)=14
15x + 14 = 14
15x = 14 - 14
15x = 0
x = 0:15
x = 0
Vậy x=0