K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 12 2021

chị ăn nan

5 tháng 12 2021

ta có :

2/x = 3/y = 4/z = x +y+z/ 2+3+4= 65/9

 ===> x = 2 x 65/9= 130/9

y= 3 x 65/9= 65/3

z= 4x 65/9= 260/9

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

$2x=3y\Leftrightarrow \frac{x}{3}=\frac{y}{2}\Leftrightarrow \frac{x}{6}=\frac{y}{4}$

$5y=4z\Leftrightarrow \frac{y}{4}=\frac{z}{5}$

Vậy:

$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}$

$\Rightarrow (\frac{x}{6})^3=(\frac{y}{4})^3=(\frac{z}{5})^3=\frac{xyz}{6.4.5}=\frac{120}{120}=1$

$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}=1$

$\Rightarrow x=6; y=4; z=5$

16 tháng 7 2021

Em cảm ơn cô ạ!

a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)

Vậy: (x,y,z)=(18;16;20)

b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)

Ta có: \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Leftrightarrow16k^2=4\)

\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)

Trường hợp 1: \(k=\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)

Trường hợp 2: \(k=-\dfrac{1}{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)

Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)

 

3 tháng 7 2021

a)

 

Theo tính chất của dãy tỉ số bằng nhau, ta có : 

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Suy ra : 

\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)

b)

\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)

Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$

Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$

c)

\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)

Suy ra : 

\(2x=y+z+1\Leftrightarrow y+z=2x-1\)

Mặt khác : 

\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)

\(2y=x+z+1=z+\dfrac{3}{2}\)

Mà \(y+z=0\Leftrightarrow z=-y\)

nên suy ra:  \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)

15 tháng 7 2015

a)\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{10}=\frac{y}{15};\frac{y}{15}=\frac{z}{21}\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)

áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{98}{48}=\frac{49}{23}\)

suy ra :

\(\frac{x}{10}=\frac{49}{23}\Rightarrow x=\frac{490}{23}\)

\(\frac{y}{15}=\frac{49}{23}\Rightarrow y=\frac{735}{23}\)

\(\frac{z}{21}=\frac{49}{23}\Rightarrow z=\frac{1029}{23}\)

bạn xem lại đề ra số hơi xấu

24 tháng 7 2019

\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)

\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)

24 tháng 7 2019

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}\)

áp dụng tính chất dãy tỉ số bằng nhau  ta có

\(\frac{2x}{1}=\frac{-3y}{-1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1+-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\hept{\begin{cases}x=-12\\y=-8\\z=-12\end{cases}}\)

31 tháng 7 2020

a) Ta có 3x = 2y = z 

=> \(\frac{3x}{6}=\frac{2y}{6}=\frac{z}{6}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{99}{11}=9\)

=> \(\hept{\begin{cases}x=18\\y=27\\z=54\end{cases}}\)

b) 6x = 10y = 15z 

=> \(\frac{6x}{30}=\frac{10y}{30}=\frac{15z}{30}\)

=> \(\frac{x}{5}=\frac{y}{3}=\frac{z}{2}=\frac{x+y+z}{5+3+2}=\frac{90}{10}=9\)

=> \(\hept{\begin{cases}x=45\\y=27\\z=18\end{cases}}\)

c) 6x = 4y = 2z

=> \(\frac{6x}{12}=\frac{4y}{12}=\frac{2z}{12}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{6}=\frac{x+y+z}{2+3+6}=\frac{27}{11}\)

=> \(\hept{\begin{cases}x=\frac{54}{11}\\y=\frac{81}{11}\\z=\frac{162}{11}\end{cases}}\)

d) x = 3y = 2z

=> \(\frac{x}{6}=\frac{3y}{6}=\frac{2z}{6}\)

=> \(\frac{x}{6}=\frac{y}{2}=\frac{z}{3}\)

=> \(\frac{2x}{12}=\frac{3y}{6}=\frac{4z}{12}=\frac{2x-3y+4z}{12-6+12}=\frac{48}{18}=\frac{8}{3}\)

=> \(\hept{\begin{cases}x=16\\y=\frac{16}{3}\\z=8\end{cases}}\)

24 tháng 7 2019

+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

 \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)

Vậy ...

18 tháng 7 2021

ta có:

\(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\) (vì 2x=3y=4z nên khi cùng chia cho 1 số thì kq vẫn bằng nhau rồi rút gọn phân số thôi)

Áp dụng tình chật dãy tỉ số bằng nhau ta co:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\Rightarrow\frac{4x-3y+2z}{24-12+6}=\frac{18}{18}=1\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{6}=1\Rightarrow x=6\\\frac{y}{4}=1\Rightarrow y=4\\\frac{z}{3}=1\Rightarrow z=3\end{cases}}\)

vậy x=6; y=4; z=3

a) x/3 = y/2 = z/5 = 2y/4 = 2y- z/4-5 = -3/-1 = 3

x/3 = 3 suy ra x=9         ;        y/2 = 3 suy ra y=6         ;           z/5 = 3 suy ra z=15

 Vậy x=3 ; y=6 ; z=15

b) x/2 = y/2 suy ra x/6 = y/15 (nhân vs 3)           ;             y/3 = z/7 suy ra y/15 = z/35 (nhân vs 5) . Suy ra x/6 = y/15 = z/35

x/6 = y/15 = z/35 = 2x/12 = 3y/45 = 2x+ 3y- z/ 12+ 45- 35 = 22/22 =1

x/6 = 1 suy ra x=6 ; y/15 = 1 suy ra y=15 ; z/35 = 1 suy ra =35

  Vậy x=6 ; y=15 ; z= 35

23 tháng 12 2020

Ta có : 2x = 3y =>\(\frac{x}{3}=\frac{y}{2}\)=>\(\frac{x}{6}=\frac{y}{4}\)(1)

            2y = 4z =>\(\frac{y}{4}=\frac{z}{2}\)(2)

Từ (1) và (2) suy ra : \(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{2}=\frac{3x}{18}=\frac{2z}{4}=\frac{3x-2z}{18-4}=\frac{10}{14}=\frac{5}{7}\)

Từ\(\frac{x}{6}=\frac{5}{7}\)=> \(x=\frac{30}{7}\)

    \(\frac{y}{4}=\frac{5}{7}\)=> \(y=\frac{20}{7}\)

     \(\frac{z}{2}=\frac{5}{7}\)=> \(z=\frac{10}{7}\)

Vậy \(x=\frac{30}{7}\)\(y=\frac{20}{7}\)và \(z=\frac{10}{7}\)