X ∈ ƯC (18;30;32)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phần 2
Câu 5:
Gọi x (tổ) là số tổ có thể chia (x ∈ ℕ*)
⇒ x ∈ ƯC(27; 18)
Ta có:
27 = 3³
18 = 2.3²
⇒ ƯCLN(27; 18) = 3² = 9
⇒ x ∈ ƯC(27; 18) = Ư(9) = {1; 3; 9}
Vậy có 3 cách chia tổ là: 1 tổ; 3 tổ và 9 tổ
Để mỗi tổ có số học sinh ít nhất thì số tổ là lớn nhất là 9 tổ
Phần 2
Câu 6
Gọi x (cây) là số cây cần tìm (x ∈ ℕ*)
Do số cây là nhỏ nhất và khi chia 3 dư 2, chia 4 dư 3, chia 5 dư 4, chia 10 dư 9 nên x + 1 = BCNN(3; 4; 5; 10)
Ta có:
3 = 3
4 = 2²
5 = 5
10 = 2.5
⇒ x + 1 = BCNN(3; 4; 5; 10) = 2².3.5 = 60
⇒ x = 60 - 1 = 59
Vậy số cây cần tìm là 59 cây
Câu 1:
Ta có:
\(90=2\cdot3^2\cdot5\)
\(135=3^3\cdot5\)
\(270=2\cdot5\cdot3^3\)
\(\Rightarrow x=ƯCLN\left(90;135;270\right)=3^2\cdot5=45\)
Chọn đáp án D
Câu 3:
Ta có:
\(27=3^3\)
\(315=3^2\cdot5\cdot7\)
\(\Rightarrow y=BCNN\left(27;315\right)=3^3\cdot5\cdot7=945\)
Chọn phương án B
Câu 4: Ta có:
\(BCNN\left(11;12\right)=132\)
\(\Rightarrow BC\left(11;12\right)=\left\{0;132;264;396;528;660;792;924;...\right\}\)
Vậy có 7 số có 3 chữ số là bội chung của 11 và 12
Chọn phương án B
a) Đúng
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ư(30) = {1; 2; 3; 5; 6; 10; 15; 30}
=> ƯC(24,30) = {1; 2; 3; 6).
Vậy 6 \( \in \) ƯC(24, 30)
b) Sai
Ư(28) = {1; 2; 4; 7; 14; 28}
Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
=> ƯC(28,42) = {1; 2; 7; 14}.
Vậy 6 \( \notin \) ƯC(28,42)
c) Đúng
Ư(18) = {1; 2; 3; 6; 9; 18}
Ư(24) = {1; 2; 3; 4; 6; 8; 12; 24}
Ư(42) = {1; 2; 3; 6; 7; 14; 21; 42}
=> ƯC(18, 24, 42} = {1; 2; 3; 6).
Vậy 6 \( \in \) ƯC(18, 24, 42)
a. Ta có : 54 = 2 . 33
12 = 22.3
Do đó ƯCLN ( 54 , 12 ) = 2 .3 = 6 hay x = 6
Vậy x = 6
b. x ∈ BC(8, 9) và x nhỏ nhất
=> x là BCNN(8, 9)
Ta có: 8 = 23
9 = 32
=> BCNN(8, 9) = 23 . 32 = 72
Vậy x = 72.
c. Vì x chia hết cho 12 và 18
=> x ∈ BC(12;18) = {0;36;72;144;288;...}
Mà x < 250 nên x ∈ {0;36;72;144}
d. Vì 15 chia hết cho 2x+1
=> 2x+1 là ước tự nhiên của 15
=> 2x+1 thuộc 1,3,5,15
xét 2x+1=1 => x = 0(t/m)
2x+1=3 => x=1(t/m)
2x+1 =5 => x=2(t/m)
2x+1=15 => x=7(t/m)
Vậy x ={ 0;1;2;7}