chứng tỏ rằng n+2 chia hết cho 2n+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
=>ĐPCM(Đá phải con ma)
=>Đùa chút thôi
( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Chứng tỏ rằng vì :
Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn
2n + 4 đã là số chẵn vì \(⋮\) cho 2
Nên chứng tỏ:
\(n+\left(2.4\right)⋮8\)
=> n + 8 chia hết cho 8
=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
\(2n+3=2\left(n+1\right)+1\)chia hết cho \(n+1\)
\(\Leftrightarrow1⋮\left(n+1\right)\)
mà \(n\)là số tự nhiên nên \(n+1\inƯ\left(1\right)=\left\{-1,1\right\}\)
\(\Leftrightarrow n\in\left\{-2,0\right\}\)
mà \(n\)là số tự nhiên nên \(n=0\).
Đặt A = n(n + 1)(2n + 1)
Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
=> A chia hết cho 2 (1)
Ta xét 3 trường hợp:
+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia hết cho 3 => A chia hết cho 3
Do đó A luôn chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1)
Vậy...