K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(\hept{\begin{cases}a=0\\b=1\\c=2\end{cases}}\)  (thỏa mãn  \(\left(\alpha\right)\)  )

7 tháng 8 2016

Vì vai trò bình đẳng của các ẩn  \(a,b,c\)  là như nhau nên không mất tính tổng quát, ta có thể giả sử:

\(2\ge c>b>a\ge0\) \(\left(\alpha\right)\) (do  \(a,b,c\)  đôi một khác nhau nên cũng không đồng thời bằng nhau)

Áp dụng bđt  \(AM-GM\)  cho từng bộ số gồm có các số không âm, ta có:

\(\left(i\right)\)  Với  \(\frac{1}{\left(a-b\right)^2}>0;\)  \(\left[-\left(a-b\right)\right]>0\)\(\frac{1}{\left(a-b\right)^2}+\left[-\left(a-b\right)\right]+\left[-\left(a-b\right)\right]\ge3\sqrt[3]{\frac{1}{\left(a-b\right)^2}.\left[-\left(a-b\right)\right]\left[-\left(a-b\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(a-b\right)^2}\ge3-2\left(b-a\right)\)  \(\left(1\right)\)

\(\left(ii\right)\) Với  \(\frac{1}{\left(b-c\right)^2}>0;\) \(\left[-\left(b-c\right)\right]>0\)

 \(\frac{1}{\left(b-c\right)^2}+\left[-\left(b-c\right)\right]+\left[-\left(b-c\right)\right]\ge3\sqrt[3]{\frac{1}{\left(b-c\right)^2}.\left[-\left(b-c\right)\right]\left[-\left(b-c\right)\right]}=3\)

\(\Rightarrow\)  \(\frac{1}{\left(b-c\right)^2}\ge3-2\left(c-b\right)\)  \(\left(2\right)\)

\(\left(iii\right)\)  Với  \(\frac{1}{\left(c-a\right)^2}>0;\)  \(\frac{c-a}{16}>0\)

\(\frac{1}{\left(c-a\right)^2}+\frac{c-a}{8}+\frac{c-a}{8}\ge3\sqrt[3]{\frac{1}{\left(c-a\right)^2}.\frac{\left(c-a\right)}{8}.\frac{\left(c-a\right)}{8}}=\frac{3}{4}\)

\(\Rightarrow\)  \(\frac{1}{\left(c-a\right)^2}\ge\frac{3}{4}-\frac{c-a}{4}\)  \(\left(3\right)\)

Cộng từng vế ba bất đẳng thức  \(\left(1\right);\)  \(\left(2\right)\)  và   \(\left(3\right)\)  , ta được:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge3-2\left(b-a\right)+3-2\left(c-b\right)+\frac{3}{4}-\frac{c-a}{4}\)

nên   \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}-\frac{9\left(c-a\right)}{4}=\frac{27}{4}+\frac{9\left(a-c\right)}{4}\)

Mặt khác, từ  \(\left(\alpha\right)\)  ta suy ra được:  \(\hept{\begin{cases}a\ge0\\2\ge c\end{cases}}\)

nên   \(a+2\ge c\) hay nói cách khác  \(a-c\ge-2\)

Do đó,  \(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{27}{4}+\frac{9.\left(-2\right)}{4}=\frac{9}{4}\)

Dấu  \("="\)  xảy ra khi và chỉ khi  \(a=0;b=1;c=2\)  (thỏa mãn  \(\left(\alpha\right)\)  )

6 tháng 3 2016

tớ ko bít. Giúp với. Nhé

6 tháng 3 2016

Áp dụng bất đẳng thức:\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\)

ta có:

\(A=\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\ge\frac{9}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

Đến đâu Cm dưới mẫu <4 nữa là đc

Tích nha

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

1 tháng 12 2019

Giả sử:

\(a>b>c\Rightarrow a-b>0,b-c>0,a-c>0\)

Ta có:

\(\hept{\begin{cases}a^2+b^2+c^2\ge a^2+c^2\\\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}\ge\frac{\left(\frac{1}{a-b}+\frac{1}{b-c}\right)^2}{2}\ge\frac{8}{\left(a-c\right)^2}\end{cases}}\)

Từ đây ta có:

\(VT\ge\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\)

Ta chứng minh

\(\left(a^2+c^2\right).\frac{9}{\left(c-a\right)^2}\ge\frac{9}{2}\)

\(\Leftrightarrow\left(a+c\right)^2\ge0\)(Đúng)

Vậy ta có điều phải chứng minh là đúng. Dấu = xảy ra khi a = - c; b = 0 và các hoán vị của nó

8 tháng 8 2017

bài này mà giải theo SOS là hơi bị tuyệt vời nhé =)))

8 tháng 8 2017

em moi co lop 7

2 tháng 5 2017

\(\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(c-a\right)\left(a-b\right)}\Rightarrow\frac{a}{\left(b-c\right)^2}=-\frac{b\left(a-b\right)+c\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-c\right)}\)

sau đó chứng minh tương tự và cộng theo từng vế thôi 

10 tháng 12 2017

Ta có \(ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\)\(\Rightarrow3\sqrt[3]{a^2b^2c^2}\le3\Leftrightarrow abc\le1\)

\(\Rightarrow\)\(\frac{1}{1+a^2\left(b+c\right)}\le\frac{1}{abc+a^2\left(b+c\right)}\)\(=\frac{1}{a\left(ab+bc+ca\right)}=\frac{1}{3a}\)

\(CMTT\Rightarrow\frac{1}{1+b^2\left(c+a\right)}\le\frac{1}{3b}\)

                  \(\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{3c}\)

\(\Rightarrow VT\le\frac{1}{3a}+\frac{1}{3b}+\frac{1}{3c}\)\(=\frac{ab+bc+ca}{3abc}=\frac{1}{abc}\)