1589 +15455
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án cần chọn là: D
Thay x=1589 ta được:
A=389–1589=389+(−1589)=−1200
n2 + n + 1589 không thể là số chính phương với mọi n được.
Để \(n^2+n+1589\) là số chính phương thì \(n^2+n+1589=a^2\left(a\in Z\right)\)
\(\Leftrightarrow4n^2+4n+6356=4a^2\)
\(\Leftrightarrow\left(4n^2+4n+1\right)+5355=\left(2a\right)^2\)
\(\Leftrightarrow\left(2n+1\right)^2-\left(2a\right)^2=-5355\)
\(\)\(\Leftrightarrow\left(2n-2a+1\right)\left(2n+2a+1\right)=-5355\)
Từ đây xét 2n - 2a + 1 ; 2n + 2a + 1 là các ước của - 5355 là ra
\(n^2+n+1589\)
\(n^2+n+1589=m^2\)
\(\Rightarrow\left(4n^2+1\right)^2+6355=4m^2\)
\(\Leftrightarrow\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\)
\(2m+2n+1>2m-2n-1>0\)
Ta viết:\(\left(2m+2n+1\right)\left(2m-2n-1\right)=6355\cdot1=1271\cdot5=205\cdot31=155\cdot414\)
\(\Rightarrow n=\text{ 1588,316,43,28}\)
\(^{n^{ }2}\)+n+1589
=( \(^{n^{ }2}\)+n+\(\dfrac{1}{4}\))+\(\dfrac{6355}{4}\)
=(n+\(\dfrac{1}{2}\))^2+\(\dfrac{6355}{4}\)
Đặt n+\(\dfrac{1}{2}\)= a => \(a^2\)+\(\dfrac{6355}{4}\)=\(b^2\)
Tự giải a sau đó suy ra n=a -\(\dfrac{1}{2}\)
Tổng của tất cả các số tự nhiên có thể n sao cho :n2+n+1589 là một hình vuông hoàn hảo ?
là đề bài cho
429:3=143
2134+1589=3723
de the nay sao ma luoi suy nghi the!
1589 + 15455 = 17044
1589+15455=17044