K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Ta có:

\(a^4+b^4\ge a^3+b^3\)  \(\left(1\right)\)

\(\Leftrightarrow\)  \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)  (vì  \(a+b=2\))

\(\Leftrightarrow\)  \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\)  \(a^4-a^3b-ab^3+b^4\ge0\)

\(\Leftrightarrow\)  \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\)  \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\)  \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  luôn đúng (do  \(\left(a-b\right)^2\ge0\)  và  \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) ), mà các phép biến đổi trên tương đương nên bất đẳng thức \(\left(1\right)\)  được chứng minh. 

Đẳng thức trên xảy ra  khi và chỉ khi  \(a=b\)

29 tháng 6 2016

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

2 tháng 3 2021
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi
24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

10 tháng 2 2018

Áp dụng bđt : x^2+y^2+z^2 >= xy+yz+zx và x^2+y^2+z^2 >= (x+y+z)^2/3 thì :

a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2 >= (ab+bc+ca)^2/3 = 4^2/3 = 16/3

Dấu "=" xảy ra <=> a=b=c=\(+-\frac{2}{\sqrt{3}}\)

Vậy ...............

Tk mk nha

10 tháng 2 2018

khó tả

AH
Akai Haruma
Giáo viên
31 tháng 1 2017

Lời giải:

Đặt \(A=\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\)

Ta có \(A=(a-\frac{ab^2}{1+b^2})+(b-\frac{bc^2}{1+c^2})+(c-\frac{ca^2}{1+a^2})=3-\left ( \frac{ab^2}{1+b^2}+\frac{bc^2}{1+c^2}+\frac{ca^2}{1+a^2} \right )\)

Áp dụng bất đẳng thức AM-GM:

\(A\geq 3-\left ( \frac{ab^2}{2b}+\frac{bc^2}{2c}+\frac{ca^2}{3a} \right )=3-\frac{1}{2}(ab+bc+ac)\)

Cũng theo AM-GM

\(9=(a+b+c)^2\geq 3(ab+bc+ac)\Rightarrow ab+bc+ac\leq 3\)

\(\Rightarrow A\geq 3-\frac{3}{2}=\frac{3}{2}\)

Dấu $=$ xảy ra khi \(a=b=c=1\)

NV
29 tháng 3 2022

\(\dfrac{a^2}{b+1}+\dfrac{b^2}{c+1}+\dfrac{c^2}{a+1}\ge\dfrac{\left(a+b+c\right)^2}{a+b+c+3}=\dfrac{9^2}{9+3}=\dfrac{27}{4}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

30 tháng 3 2022

Chứng minh BĐT \(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\) với \(\left(a,b,c>0\right)\)

Trước hết ta cm \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\)\(\Leftrightarrow\frac{x^2b+y^2a}{ab}\ge\frac{x^2+y^2+2xy}{a+b}\)\(\Leftrightarrow\left(x^2b+y^2a\right)\left(a+b\right)\ge ab\left(x^2+y^2+2xy\right)\)(vì tất cả các tử số và mẫu số đều dương)

\(\Leftrightarrow x^2ab+y^2ab+x^2b^2+y^2a^2\ge abx^2+aby^2+2abxy\)\(\Leftrightarrow x^2b^2-2abxy+y^2a^2\ge0\)\(\Leftrightarrow\left(xb-ya\right)^2\ge0\)(luôn đúng)

Vậy BĐT được cm 

Để có đpcm thì ta chỉ cần áp dụng 2 lần BĐT ta vừa chứng minh xong:

\(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\ge\frac{\left(x+y\right)^2}{a+b}+\frac{z^2}{c}\ge\frac{\left(x+y+z\right)^2}{a+b+c}\)