K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2021

1) x= 1;2

2) x=0;1;2;3

3) x=0;1;2;3;4

4 tháng 12 2021

1)1;2

14 tháng 10 2021

1. x(x + 1) - x2 + 1 = 0

<=> x(x + 1) - (x2 - 1) = 0

<=> x(x + 1) - (x + 1)(x - 1) = 0

<=> (x - x + 1)(x + 1) = 0

<=> x + 1 = 0\

<=> x = -1

2. 4x(x - 2) - 6 + 3x = 0

<=> 4x(x - 2) - (3x - 6) = 0

<=> 4x(x - 2) - 3(x - 2) = 0

<=> (4x - 3)(x - 2) = 0

<=> \(\left[{}\begin{matrix}4x-3=0\\x-2=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=2\end{matrix}\right.\)

3. x(x + 2) - 3(x + 2) = 0

<=> (x - 3)(x + 2) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\x+2=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
14 tháng 11 2023

Lời giải:

1. $(x+2)-2=0$

$x+2=2$

$x=0$

2.

$(x+3)+1=7$

$x+3=7-1=6$

$x=6-3=3$

3.

$(3x-4)+4=12$

$3x-4+4=12$

$3x=12$

$x=12:3=4$

4.

$(5x+4)-1=13$

$5x+4=13+1=14$

$5x=14-4=10$

$x=10:5=2$

5.

$(4x-8)-3=5$

$4x-8=5+3=8$

$4x=8+8=16$

$x=16:4=4$

6.

$3+(x-5)=7$

$x-5=7-3=4$

$x=4+5=9$

7.

$8-(2x-4)=2$

$2x-4=8-2=6$

$2x=6+4=10$

$x=10:2=5$

8.

$7+(5x+2)=14$

$5x+2=14-7=7$

$5x=7-2=5$

$x=5:5=1$

9.

$5-(3x-11)=1$

$3x-11=5-1=4$

$3x=11+4=15$

$x=15:3=5$

10.

$16-(8x+2)=6$

$8x+2=16-6=10$

$8x=10-2=8$

$x=8:8=1$

2 tháng 1 2019

a) Để A = 0 thì \(x-7=0\Leftrightarrow x=7\)( thỏa mãn ĐKXĐ )

Để A > 0 thì có 2 trường hợp :

+) TH1 : \(\hept{\begin{cases}x-7>0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x>-4\end{cases}\Leftrightarrow}x>7}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x< -4\end{cases}}}\Leftrightarrow x< -4\)

Để A < 0 thì có 2 trường hợp :

+) TH1: \(\hept{\begin{cases}x-7>0\\x+4< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>7\\x< -4\end{cases}\Leftrightarrow}7< x< -4\left(\text{vô lí}\right)}\)

+) TH2: \(\hept{\begin{cases}x-7< 0\\x+4>0\end{cases}\Leftrightarrow\hept{\begin{cases}x< 7\\x>-4\end{cases}\Leftrightarrow}-4< x< 7}\)

2 tháng 1 2019

b) Để A thuộc Z thì x -7 ⋮ x + 4

<=> x + 4 - 11 ⋮ x + 4 

Vì x + 4 ⋮ x + 4

=> 11 ⋮ x + 4

=> x + 4 thuộc Ư(11) = { 1; 11; -1; -11 }

=> x thuộc { -3; 7; -5; -15 }

Vậy...........

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

14 tháng 12 2020

giá trị tuyện đối luôn là số tự nhiên 

số tự nhiên chỉ có thể 0 + 0 + 0 =0 nên x;y;z = 0

14 tháng 10 2021

1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)

\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)

\(\Leftrightarrow x=2\)

3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)

\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)

\(\Leftrightarrow6x=6\)

hay x=1

4 tháng 9 2015

Lắm thế                                  

a: 

ĐKXĐ: x>0; x<>1\(M=\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\left(\sqrt{x}+1\right)^2-4\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+2\sqrt{x}+1-4\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{x-2\sqrt{x}}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}-2}\)

b: M là số nguyên

=>\(\sqrt{x}-1⋮\sqrt{x}-2\)

=>\(\sqrt{x}-2+1⋮\sqrt{x}-2\)

=>căn x-2 thuộc {1;-1}

=>căn x thuộc {3;1}

=>x thuộc {9;1}

Kết hợp ĐKXĐ, ta được: x=9

c: M<0

=>\(\dfrac{\sqrt{x}-1}{\sqrt{x}-2}< 0\)

=>\(1< \sqrt{x}< 2\)

=>1<x<4