xy-x-y=2? tim x va y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/2 = y/5
=> xy/10 = x/2 = y/5 = 10/10 = 1
=> x = 1x 2 = 2
y = 1 x 5 = 5
Đặt \(k=\frac{x}{2}=\frac{y}{5}\)
=> \(k^2=\frac{xy}{2.5}=\frac{xy}{10}=\frac{10}{100}=1\)
=> k = -1;1
+ k = -1 thì \(\frac{x}{2}=-1\Rightarrow x=-2\)
\(\frac{y}{5}=-1\Rightarrow y=-5\)
+ k = 1 thi \(\frac{x}{2}=1\Rightarrow x=2\)
\(\frac{y}{5}=1\Rightarrow y=5\)
Vậy .............................
\(\frac{2}{x}=\frac{3}{y}\Rightarrow x=\frac{2y}{3}\)
Thay vào x . y, ta được:
\(x\cdot y=\frac{2y}{3}\cdot y=\frac{2y^2}{3}=96\)
=> \(2y^2=96\cdot3=288\Rightarrow y^2=\frac{288}{2}=144\)
=> \(y=\sqrt{144}=12\) hoặc \(y=-12\)
- y = 12 => x = 96 : 12 = 8
- y = -12 => x = 96 : (-12) = -8
Vậy x = 8; y = 12 hoặc x = -8 ; y = -12
\(\frac{2}{x}=\frac{3}{y}=>\frac{2}{x}.\frac{3}{y}=\frac{3}{y}.\frac{3}{y}=>\frac{6}{xy}=\frac{9}{y^2}=>\frac{6}{96}=\frac{9}{y^2}=>\frac{1}{16}=\frac{9}{y^2}\)
\(=>y^2=9:\frac{1}{16}=144=12^2=\left(-12\right)^2\)
=>y=12,-12
Với y=12=>x=96:12=8
Với y=-12=>x=96:(-12)=-8
Vậy x=-8,y=-12
x=8,y=12
Đặt x/2=y/3=k
=>x=2k; y=3k
\(x^2=-19+y^2+xy\)
\(\Leftrightarrow4k^2=-19+9k^2+6k^2\)
\(\Leftrightarrow k^2=\dfrac{19}{11}\)
Trường hợp 1: \(k=\sqrt{\dfrac{19}{11}}\)
=>\(x=2\sqrt{\dfrac{19}{11}};y=\dfrac{3\sqrt{19}}{11}\)
Trường hợp 2: \(k=-\sqrt{\dfrac{19}{11}}\)
=>\(x=-2\sqrt{\dfrac{19}{11}};y=-\dfrac{3\sqrt{19}}{11}\)
em xin lỗi chớ em mới lớp 6 thui anh Đức ạ
Ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=k\)
Theo đề bài, ta có :
\(xy=54\Rightarrow2k.3k=54\)
\(\Rightarrow5k=54\Rightarrow k=10,8\)
Ta thấy :
\(\dfrac{x}{2}=10,8\Rightarrow x=10,8.2=21,6\)
\(\dfrac{y}{3}=10,8\Rightarrow y=10,8.3=32,4\)
Đặt :\(\dfrac{x}{2}=\dfrac{y}{3}=k\Leftrightarrow\left\{{}\begin{matrix}x=2k\\y=3k\end{matrix}\right.\)
mà \(xy=54\)
hay 2k . 3k = 54
\(\Rightarrow6.k^2=54\)
\(\Rightarrow k^2=9=\left(\pm3\right)^2\)
Với k = 3 \(\Rightarrow\) \(x=2.3=6;y=3.3=9\)
Với k = -3 \(\Rightarrow x=2.\left(-3\right)=-6;y=3.\left(-3\right)=-9\)