K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 11 2022

Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHElà hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC=MB

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

6 tháng 12 2022

Tại sao AED = AHD = ABC

 

a: Xét tứ giác ADHE co

góc ADH=góc AEH=góc DAE=90 độ

nên ADHE là hình chữ nhật

b: ΔABC vuông tại A

mà AM là trung tuyến

nên AM=BM=CM

ADHE là hình chữ nhật

nên góc AEH=góc ADH=góc ABC

=>góc AEH+góc MAC=90 độ

=>DE vuông góc với AM

30 tháng 10

tui thấy ss sao á

 

16 tháng 12 2017

1a) A=D=E=90 độ

=>AEHD là hcn 

=>AH=DE

b)Xét tam giác DBH vuông tại D có:

DI là đường trung tuyến ứng với cạnh huyền BH

=>DI=BH/2=IH

=>tam giác IDH cân tại I

=>góc IDH=góc IHD (1)

Gọi O là gđ 2 đường chéo AH và DE

=>OD=OA=OE=OH (tự c/m)

=> tam giác DOH cân tại O

=> góc ODH=góc OHD(2)

từ (1) và (2) => góc ODH+góc IDH=90 độ(EHD+DHI=90 độ)

=>IDvuông góc DE(3)

Cmtt ta được: KEvuông góc DE(4)

Từ (3)và (4) => DI//KE.

16 tháng 12 2017

2a) Ta có góc HAB+góc HAC=90 độ (1)

Xét tam giác ABC vuông tại A có 

AM là đg trung tuyến ứng vs cạnh huyền BC

=>AM=MC

=>tam giác AMC cân

=>góc MAC=góc ACM

Lại có: góc HAC+góc ACH=90 độ(2)

Từ (1) và (2) => góc BAH=góc ACM

Mà góc AMC=góc MAC(cmt)

=>ABH=MAC(3)

b)A=D=E=90 độ

=>AFHE là hcn

Gọi O là gđ EF và AM

OA=OF(tự cm đi nha)

=>tam giác OAF cân

=>OAF=OFA(4)

Ta có : OAF+MCA=90 độ(5)

Từ (3)(4) và (5)

=>MAC+OFA=90 độ

Hay AM vuông góc EF

k giùm mình nha.

a: BC=BH+CH

=2+8

=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{2\cdot8}=4\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}AB=\sqrt{2\cdot10}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{8\cdot10}=4\sqrt{5}\left(cm\right)\end{matrix}\right.\)

b: Xét tứ giác ADHE có

\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH

c: ΔHDB vuông tại D 

mà DM là đường trung tuyến

nên DM=HM=MB

\(\widehat{EDM}=\widehat{EDH}+\widehat{MDH}\)

\(=\widehat{EAH}+\widehat{MHD}\)

\(=90^0-\widehat{C}+\widehat{C}=90^0\)

=>DE vuông góc DM

5 tháng 1 2020

A B C I H D E O K

Cm:a) Xét tứ giác ADHE có \(\widehat{A}=\widehat{ADH}=\widehat{HEA}=90^0\)

=> ADHE là hình chữ nhật

đt DE cắt đt AH tại O

=> OA = OE

b) Ta có: OA = OE => t/giác AOE cân tại O => \(\widehat{OAE}=\widehat{OEA}\) hay \(\widehat{HAC}=\widehat{DEA}\)

Ta lại có: t/giác ABC vuông tại A => \(\widehat{B}+\widehat{C}=90^0\)

           t/giác AHC vuông tại A => \(\widehat{HAC}+\widehat{C}=90^0\)

=> \(\widehat{B}=\widehat{HAC}\) 

mà \(\widehat{HAC}=\widehat{DEA}\) 

=> \(\widehat{ABC}=\widehat{AED}\)(đpcm)

c) Gọi K là giao điểm của AI và DE

Xét t/giác ABC vuông tại A có AI là đường trung tuyến (BI = IC)

=> AI = IB = IC = 1/2BC

=> t/giác AIC cân tại I

=> \(\widehat{IAC}=\widehat{C}\) hay \(\widehat{KAE}=\widehat{C}\)

Ta có: \(\widehat{B}+\widehat{C}=90^0\) 

mà \(\widehat{B}=\widehat{KEA}\) (cmt); \(\widehat{C}=\widehat{KAE}\)(Cmt)

=> \(\widehat{KAE}+\widehat{KEA}=90^0\)

Xét t/giác AKE có \(\widehat{KAE}+\widehat{KEA}=90^0\) => \(\widehat{AKE}=90^0\)

=> AI \(\perp\)DE

5 tháng 1 2020

a) Xét tứ giác ADHE 

Ta có: góc A=900(gt)

góc ADH=900(gt)

góc EHD=900(gt)

=>tứ giác ADHE là hcn

=>AH=DE(đpcm)

11 tháng 10 2023

a: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AH\cdot BC=AB\cdot AC\\BH\cdot BC=AB^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\dfrac{9\cdot12}{15}=7.2\left(cm\right)\\BH=\dfrac{9^2}{15}=5.4\left(cm\right)\end{matrix}\right.\)

b:

ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

ΔAHC vuông tại H có HE là đường cao

nên \(HE\cdot AC=HA\cdot HC\)

 \(HD\cdot AB+HE\cdot AC\)

\(=HA\cdot HB+HA\cdot HC=HA\cdot\left(HB+HC\right)\)

\(=HA\cdot BC=AB\cdot AC\)

c: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

ΔABC vuông tại A có AM là trung tuyến

nên AM=MB=MC

\(\widehat{IEA}+\widehat{IAE}=\widehat{DEA}+\widehat{IAC}\)

\(=\widehat{DHA}+\widehat{MCA}\)

\(=\widehat{ABC}+\widehat{ACB}=90^0\)

=>AM vuông góc DE tại I

ΔADE vuông tại A có AI là đường cao

nên \(\dfrac{1}{AI^2}=\dfrac{1}{AE^2}+\dfrac{1}{AD^2}\)

19 tháng 11 2022

a: Xét tứ giác ADHE có

góc ADH=góc AEH=góc DAE=90 độ

nên ADHElà hình chữ nhật

=>góc AED=góc AHD=góc ABC

Ta có: ΔABC vuông tại A

mà AM là trung tuyến

nên MA=MC=MB

=>góc MAC=góc MCA

=>góc MAC+góc AED=90 độ

=>AM vuông góc với DE

b: HE//AB

=>HN//AB

mà góc NAB=góc HBA

nên NHBA là hình thang cân

=>góc ANB=góc AHB=90 độ

=>BN vuông góc với AM

=>BN//DE

16 tháng 10 2020

A B C H D E

16 tháng 10 2020

a, Ta có : 

^C = 450 ( t/c tam giác vuông cân : mỗi góc nhọn đều bằng 450 ) (*)

Lại có : Đường trung trực của một đoạn thẳng là đường thẳng vuông góc với đoạn thẳng ấy tại trung điểm của nó 

Mà : ^BDH = 900 => ^HDA + ^BDH = ^DBA => ^HDA = ^DBA - ^BDH = 1800 - 900 = 900

Suy ra : ^ADE = ^HDE = ^HDA/2 = 900/2 = 450 (**)

tỪ (*); (**) TA CÓ ĐPCM