Tìm các số tự nhiên x,y,z biết rằng:
\(\frac{x}{3}=\frac{14}{y}=\frac{z}{60}=\frac{8}{12}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
\(\frac{x}{3}=\frac{8}{12}=\frac{2}{3}\Rightarrow x=2\)
\(\frac{2}{3}=\frac{14}{21}=\frac{14}{y}\Rightarrow y=21\)
\(\frac{2}{3}=\frac{40}{60}=\frac{z}{60}\Rightarrow z=40\)
Vậy x=2; y=21; z=40.
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{8}=\frac{2x+y-3}{6+4-3}=\frac{-14}{7}=-2\)
\(\frac{x}{3}=-2\Rightarrow x=-2.3=-6\)
\(\frac{y}{4}=-2\Rightarrow y=-2.4=-8\)
\(\frac{z}{8}=-2\Rightarrow z=-2.8=-16\)
k nha
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)(1)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)(2)
Từ (1) ; (2) ta có : \(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{2x+y-3}{2.18+24-3}=-\frac{14}{57}\)
\(\Leftrightarrow\frac{x}{18}=-\frac{14}{57};\Leftrightarrow\frac{y}{24}=-\frac{14}{57};\frac{z}{32}=-\frac{14}{57}\)
Tự tính, hỏng mt r
\(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\Rightarrow\left(\frac{x}{2}\right)^3=\left(\frac{x}{4}\right)^3=\left(\frac{x}{6}\right)^3\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)
\(\Rightarrow x^2=1;y^2=4;z^2=9\)
\(\Rightarrow x=1;y=2;z=3\) hoặc \(x=-1;y=-2;z=-3\)
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
x=2;y=21;z=40
tck nha bn
X=2;Y=21;Z=40