Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng 2A + 3 là một lũy thừa của 3 với
A = 3 + 32 + 33 + ...+ 3100
\(2A=3A-A=3.\left(3+3^2+3^3+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)
\(=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}-3+3=3^{101}\text{ là 1 lũy thừa của 3.}\)
Nhanh + đúng đc 1 l ike
\(2A=3A-A=3.\left(3+3^2+3^3+...+3^{100}\right)-\left(3+3^2+3^3+...+3^{100}\right)\)
\(=3^2+3^3+3^4+...+3^{101}-3-3^2-3^3-...-3^{100}\)
\(=3^{101}-3\)
\(\Rightarrow2A+3=3^{101}-3+3=3^{101}\text{ là 1 lũy thừa của 3.}\)
Nhanh + đúng đc 1 l ike