Tinh S = 2^3+3^3+4^3+5^3+.....+20^3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1-3+3^2-3^3+....+3^98-3^99
S=1.(1-3+3^2-3^3)+3^4.(1-3+3^2-3^3)+...+3^96.(1-3+3^2-3^3)
S=1.(-20)+3^4.(-20)+...+3^96.(-20)
S=(1+3^4+...+3^96).(-20) chia hết cho -20
Vậy S là bội của -20
b)
S=1-3+3^2-3^3+....+3^98-3^99
3S=3-3^2+3^3-3^4+...+3^99-3^100
4S=1-3^100
S=1-3^100/4
Suy ra 1-3^100 chia hết cho 4
Mà 1 chia 4 dư 1
Suy ra 3^100 chia 4 dư 1
5:
a: \(3^{2n}=\left(3^2\right)^n=9^n\)
\(\left(2^{3n}\right)=\left(2^3\right)^n=8^n\)
=>\(3^{2n}>2^{3n}\)
b: \(199^{20}=\left(199^4\right)^5=1568239201^5\)
\(2003^{15}=\left(2003^3\right)^5=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
4: \(100< 5^{2x-1}< 5^6\)
mà \(25< 100< 125\)
nên \(125< 5^{2x-1}< 5^6\)
=>3<2x-1<6
=>4<2x<7
=>2<x<7/2
mà x nguyên
nên x=3
S = 23 + 33 + ... + 203
= ( 2 + 3 + ... + 203 )
= 44099
44099 , tớ giải violympic được 300 điểm đấy !!!!!