CM:các ps sau=nhau
a;41/88;4141/8888;414141/888888
b;27425-27/99900;27425425-27425/99900000
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì các phân số \(\dfrac{5}{-20};\dfrac{-7}{-14}\) rút gọn thành \(\dfrac{-1}{4};\dfrac{1}{2}\) nên chúng = ngau
a: Gọi a là UCLN(3n+1;6n+3)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+3⋮a\\6n+2⋮a\end{matrix}\right.\Leftrightarrow1⋮a\Leftrightarrow a=1\)
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
\(\Leftrightarrow\left\{{}\begin{matrix}6n+5⋮a\\6n+3⋮a\end{matrix}\right.\Leftrightarrow2⋮a\)
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
Bài giải
a: Gọi a là UCLN(3n+1;6n+3)
⇔⎧⎨⎩6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1⇔{6n+3⋮a6n+2⋮a⇔1⋮a⇔a=1
Vậy: 3n+1 và 6n+3 là hai số nguyên tố cùng nhau
b: Gọi a là UCLN(2n+1;6n+5)
⇔⎧⎨⎩6n+5⋮a6n+3⋮a⇔2⋮a⇔{6n+5⋮a6n+3⋮a⇔2⋮a
mà 2n+1 là số lẻ
nên a=1
Vậy: 2n+1 và 6n+5 là hai số nguyên tố cùng nhau
a) Ta có: \(\dfrac{x^2+2x+1}{x^2+x}\)
\(=\dfrac{\left(x+1\right)^2}{x\left(x+1\right)}\)
\(=\dfrac{x+1}{x}\)
b) Ta có: \(\dfrac{x^2-4x+3}{x^2-x}\)
\(=\dfrac{\left(x-1\right)\left(x-3\right)}{x\left(x-1\right)}\)
\(=\dfrac{x-3}{x}\)
Lời giải:
a. Gọi $d$ là ƯCLN $(n+2, n+3)$
$\Rightarrow n+2\vdots d, n+3\vdots d$
$\Rightarrow (n+3)-(n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$
Vậy $ƯCLN(n+2, n+3)=1$ hay $n+2, n+3$ nguyên tố cùng nhau.
b.
Gọi $d$ là ƯCLN $(2n+3, 3n+5)$
$\Rightarrow 2n+3\vdots d$ và $3b+5\vdots d$
$\Rightarrow 2(3n+5)-3(2n+3)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(2n+3,3n+5)=1$ nên 2 số này nguyên tố cùng nhau.
a) Ta có: \(\dfrac{m^2+2m+1}{m^2-1}\)
\(=\dfrac{\left(m+1\right)^2}{\left(m+1\right)\left(m-1\right)}\)
\(=\dfrac{m+1}{m-1}\)
b) Ta có: \(\dfrac{2a^4+3a^3+2a+3}{\left(a^2-a+1\right)\left(4a+6\right)}\)
\(=\dfrac{a^3\left(2a+3\right)+\left(2a+3\right)}{\left(a^2-a+1\right)\left(4a+6\right)}\)
\(=\dfrac{\left(2a+1\right)\left(a+1\right)\left(a^2-a+1\right)}{2\left(a^2-a+1\right)\left(2a+3\right)}\)
\(=\dfrac{a+1}{2}\)
b: Vì 14n+10 là số chẵn
và 10n+7 là số lẻ
nên 14n+10 và 10n+7 là hai số nguyên tố cùng nhau
a.
các phân số bằng \(\dfrac{4}{5}\) là: \(\dfrac{8}{10};\dfrac{28}{25};\dfrac{32}{40}\)
b.
Các phân số bằng \(\dfrac{3}{7}\) là: \(\dfrac{27}{63};\dfrac{36}{84};\dfrac{15}{35}\)
a, Ngôi nhà được xây dựng trong 3 năm.
- Ngôi nhà được xây dựng bởi các kiến trúc sư trong 3 năm.
b, khong hiểu nên chịu/
\(a.\) Ta có
\(\frac{41}{88}=\frac{41.101}{88.101}=\frac{4141}{8888}\)
Mặt khác, ta cũng có \(\frac{41}{88}=\frac{41.10101}{88.10101}=\frac{414141}{888888}\)
Do đó, \(\frac{41}{88}=\frac{4141}{8888}=\frac{414141}{888888}\)
\(b.\)
Ta có:
\(\frac{27425425-27425}{99900000}=\frac{\left(27425000+425\right)-\left(27000+425\right)}{99900000}=\frac{\left(27425-27\right).1000}{99900.1000}=\frac{27425-27}{99900}\)