tìm x
13x-3x+(-17x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(-3x^4+20x^3-35x^2-10x+48\)
\(=-\left(3x^4-20x^3+35x^2+10x-48\right)\)
\(=-\left(3x^4-9x^3-11x^3+33x^2+2x^2-6x+16x-48\right)\)
\(=-\left(x-3\right)\left(3x^3-11x^2+2x+16\right)\)
\(=-\left(x-3\right)\left(3x^3-6x^2-5x^2+10x-8x+16\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x^2-5x-8\right)\)
\(=-\left(x-3\right)\left(x-2\right)\left(3x-8\right)\left(x+1\right)\)
b: Ta có: \(-\left(2x^4+7x^3+x^2-7x-3\right)\)
\(=-\left(2x^4-2x^3+9x^3-9x^2+10x^2-10x+3x-3\right)\)
\(=-\left(x-1\right)\left(2x^3+9x^2+10x+3\right)\)
\(=-\left(x-1\right)\left(2x^3+2x^2+7x^2+7x+3x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\left(2x^2+7x+3\right)\)
\(=-\left(x-1\right)\left(x+1\right)\cdot\left(x+3\right)\left(2x+1\right)\)
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
\(a.P(x)=x^7-80x^6+80x^5-80x^4+....+80x+15\)
\(=x^7-79x^6-x^6+79x^5+x^5-79x^4-....-x^2+79x+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-....-x(x-79)+x+15\)
\(=(x-79)(x^6-x^5+x^4-....-x)+x+15\)
Thay x = 79 vào biểu thức trên , ta có
\(P(79)=(79-79)(79^6-79^5+79^4-...-79)+79+15\)
\(=0+79+15\)
\(=94\)
Vậy \(P(x)=94\)khi x = 79
\(b.Q(x)=x^{14}-10x^{13}+10x^{12}-.....+10x^2-10x+10\)
\(=x^{14}-9x^{13}-x^{13}+9x^{12}+.....-x^3+9x^2+x^2-9x-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+.....-x^2(x-9)+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+.....-x^2+x)-x+10\)
Thay x = 9 vào biểu thức trên , ta có
\(Q(9)=(9-9)(9^{13}-9^{12}+.....-9^2+9)-9+10\)
\(=0-9+10\)
\(=1\)
Vậy \(Q(x)=1\)khi x = 9
\(c.R(x)=x^4-17x^3+17x^2-17x+20\)
\(=x^4-16x^3-x^3+16x^2+x^2-16x-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Thay x = 16 vào biểu thức trên , ta có
\(R(16)=(16-16)(16^3-16^2+16)-16+20\)
\(=0-16+20\)
\(=4\)
Vậy \(R(x)=4\)khi x = 16
\(d.S(x)=x^{10}-13x^9+13x^8-13x^7+.....+13x^2-13x+10\)
\(=x^{10}-12x^9-x^9+12x^8+.....+x^2-12x-x+10\)
\(=x^9(x-12)-x^8(x-12)+....+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+....+x)-x+10\)
Thay x = 12 vào biểu thức trên , ta có
\(S(12)=(12-12)(12^9-12^8+....+12)-12+10\)
\(=0-12+10\)
\(=-2\)
Vậy \(S(x)=-2\)khi x = 12
Hình như đây là toán lớp 7 có trong phần trắc nghiệm của thi HSG huyện
Chúc bạn học tốt , nhớ kết bạn với mình
a, x = 79 => x + 1 = 80
Ta có:\(P\left(x\right)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=x^7-\left(x+1\right)x^6+\left(x+1\right)x^5-\left(x+1\right)x^4+...+\left(x+1\right)x+15\)
\(=x^7-x^7-x^6+x^6+x^5-x^5-x^4+...+x^2+x+15\)
\(=x+15=79+15=94\)
Còn lại tương tự
\(Q_{\left(x\right)}=x^{14}-10x^{13}+10x^{12}-10x^{11}+...+10x^2-10x+10\)
\(=x^{14}-\left(x+1\right)x^{13}+\left(x+1\right)x^{12}-\left(x+1\right)x^{11}+..+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)
\(=x^{14}-x^{14}-x^{13}+x^{13}+x^{12}-x^{12}-x^{11}+...+x^3+x^2-x^2-x+x+1\)
\(=1\)
Lời giải:
a) Với \(x=79\)
\(P(x)=x^7-80x^6+80x^5-80x^4+...+80x+15\)
\(=(x^7-79x^6)-(x^6-79x^5)+(x^5-79x^4)-....-(x^2-79x)+x+15\)
\(=x^6(x-79)-x^5(x-79)+x^4(x-79)-...-x(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(x-79)+x+15\)
\(=(x^6-x^5+x^4-...-x)(79-79)+79+15=79+15=94\)
b) Hoàn toàn tương tự phần a.
\(Q(x)=(x^{14}-9x^{13})-(x^{13}-9x^{12})+(x^{12}-9x^{11})-...+(x^2-9x)-x+10\)
\(=x^{13}(x-9)-x^{12}(x-9)+x^{11}(x-9)-...+x(x-9)-x+10\)
\(=(x-9)(x^{13}-x^{12}+x^{11}-...+x)-x+10\)
\(=(9-9)(x^{13}-x^{12}+...+x)-9+10=0-9+10=1\)
c)
\(R(x)=(x^4-16x^3)-(x^3-16x^2)+(x^2-16x)-x+20\)
\(=x^3(x-16)-x^2(x-16)+x(x-16)-x+20\)
\(=(x-16)(x^3-x^2+x)-x+20\)
Với $x=16$ thì $Q(x)=(16-16)(x^3-x^2+x)-16+20=0-16+20=4$
d)
\(S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+x(x-12)-x+10\)
\(=x^9(x-12)-x^8(x-12)+x^7(x-12)-...+x(x-12)-x+10\)
\(=(x-12)(x^9-x^8+x^7-..+x)-x+10\)
\(=(12-12)(x^9-x^8+x^7-...+x)-12+10=-12+10=-2\)
a)
$A=(1^2-2^2)+(3^2-4^2)+....+(2003^2-2004^2)+2005^2$
$=(1-2)(1+2)+(3-4)(3+4)+....+(2003-2004)(2003+2004)+2005^2$
$=-(1+2)-(3+4)-...-(2003+2004)+2005^2$
$=-(1+2+3+...+2004)+2005^2=-\frac{2004.2005}{2}+2005^2$
$=2005^2-1002.2005=2005(2005-1002)=2011015$
b)
$B=(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{16}-1)(2^{16}+1)(2^{32}+1)-2^{64}$
$=(2^{32}-1)(2^{32}+1)-2^{64}$
$=2^{64}-1-2^{64}=-1$
c) Do $x=16$ nên $x-16=0$
$R(x)=x^4-17x^3+17x^2-17x+20$
$=(x^4-16x^3)-(x^3-16x^2)+x^2-16x-x+20$
$=x^3(x-16)-x^2(x-16)+x(x-16)-x+20$
$=x^3.0-x^2.0+x.0-x+20=-x+20=-16+20=4$
d) Do $x=12$ nên $x-12=0$. Khi đó:
$S(x)=(x^{10}-12x^9)-(x^9-12x^8)+(x^8-12x^7)-....+(x^2-12x)-x+10$
$=x^9(x-12)-x^8(x-12)+x^7(x-12)-....+x(x-12)-x+10$
$=(x-12)(x^9-x^8+x^7-....+x)-x+10$
$=0-x+10=-x+10=-12+10=-2$
\(b,x^3-3x^2-4x+12\)
\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x^2-4\right)\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
\(c,3x^3-7x^2+17x-5\)
\(\Leftrightarrow3x^3-x^2-6x^2+2x+15x-5\)
\(\Leftrightarrow x^2\left(3x-1\right)-2x\left(3x-1\right)+5\left(3x-1\right)\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-2x+5\right)\)
\(\text{d) 2x}^4- 7x^3 - 2x^2 + 13x + 6\)
\(\text{= (2x^4 + 2x^3) - (9x^3 + 9x^2) + (7x^2 + 7x) + (6x + 6)}\)
\(\text{= 2x^3(x + 1) - 9x^2(x + 1) + 7x(x + 1) + 6(x + 1)}\)
\(\text{= (x + 1)(2x^3 - 9x^2 + 7x + 6)}\)
\(\text{= (x + 1)(2x + 1)(x - 3)(x - 2)}\)
\(4x^3-13x^2+9x-18=4x^3-12x^2-x^2+3x+6x-18\)
\(=4x^2.\left(x-3\right)-x\left(x-3\right)+3.\left(x-3\right)=\left(x-3\right)\left(4x^2-x+3\right)\)
\(4x^3-13x^2+9x-18\)
\(=4x^3-12x^2-x^2+3x+6x-18\)
\(=4x^2\left(x-3\right)-x\left(x-3\right)+6\left(x-3\right)\)
\(=\left(x-3\right)\left(4x^2-x+6\right)\)
A = x4 - 17x3 + 17x2 - 17x + 20 tại x = 16
Ta có: x = 16 => x + 1 = 17
=> A = x4 - (x + 1)x3 + (x + 1)x2 - (x + 1)x + 20
= x4 - x4 - x3 + x3 + x2 - x2 - x +20
= 20 - x
Tại x = 16 thì A = 20 - 16 = 4
B = x5 - 15x4 + 16x3 - 29x2 + 13x tại x = 14
Ta có: x = 14 => x + 1 = 15; x + 2 = 16; 2x + 1 = 29; x - 1 = 13
=> B = x5 - (x + 1)x4 + (x + 2)x3 - (2x + 1)x2 + (x - 1)x
= x5 - x5 - x4 + x4 + 2x3 - 2x3 - x2 + x2 - x
= x
Tại x = 14 thì B = 14