K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2021

mờ quá

2 tháng 12 2021

Không đọc được luôn

Bài 11:

a: Ta có: \(P=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}\)

\(=\sqrt{x}\cdot\left(\sqrt{x}-1\right)\)

\(=x-\sqrt{x}\)

b: Để P=2 thì \(x-\sqrt{x}-2=0\)

hay x=4

Bài 10:

a: Ta có: \(A=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{x-2\sqrt{x}+1}{\left(x+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}\cdot\dfrac{x+1}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để A<0 thì \(\sqrt{x}-1< 0\)

hay x<1

Kết hợp ĐKXĐ, ta được: \(0\le x< 1\)

Để A=-1 thì \(x+\sqrt{x}+1=-\sqrt{x}+1\)

\(\Leftrightarrow x=0\)

c: Thay x=4 vào A, ta được:

\(A=\dfrac{4+2+1}{2-1}=7\)

14 tháng 8 2021

Bài 10: A

Bài 11:

Áp dụng hệ thức về cạnh và góc trong tam giác vào tam giác vuông, ta được:
AC = AB.tan\(^{50^0}\) = 21.tan\(^{50^0}\) \(\approx\) 25

BC = \(\dfrac{AB}{\sin C}\)\(\dfrac{21}{sin40^0}\)\(\approx\)33

BD = \(\dfrac{AB}{\cos25^0}\)=\(\dfrac{21}{\cos25^0}\)\(\approx\)23

20 tháng 8 2021

câu 10 giải ra là vù sao hằng A ạ ?

13 tháng 10 2021

Bài 10: 

a: Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}3x-8=-2x-3\\y=3x-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\cdot1-8=-5\end{matrix}\right.\)

Thay x=1 và y=-5 vào (d3), ta được:

\(3m+2m+1=-5\)

hay \(m=-\dfrac{6}{5}\)

13 tháng 10 2021

bạn có thể làm giúp mình thêm câu b,c và d được không ạ?

 

11 tháng 4 2022

y = 10

11 tháng 4 2022

10

16 tháng 4 2022

Câu 11.

a)Độ tự cảm của ống dây:

\(L=4\pi\cdot10^{-7}\cdot\dfrac{N^2}{l}S=4\pi\cdot10^{-7}\cdot\dfrac{1000^2}{0,2}\cdot50\cdot10^{-4}=0,0314H=0,0314\cdot10^3=31,4mH\)

b)Độ biến thiên từ thông:

\(\Delta\Phi=L\cdot\Delta i=0,0314\cdot\left(1-0\right)=0,0314Wb\)

Suất điện động cảm ứng:

\(e_{tc}=\left|-\dfrac{\Delta\Phi}{\Delta t}\right|=\left|-\dfrac{0,0314}{0,1}\right|=0,314V\)

1: Xét ΔAOC và ΔBOD có 

OA=OB

\(\widehat{AOC}=\widehat{BOD}\)

OC=OD

Do đó: ΔAOC=ΔBOD

Suy ra: \(\widehat{ACO}=\widehat{BDO}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AC//BD