cho
S = \(^{3^0}\)+ \(3^2\)+ \(^{3^4}\)+ \(3^6\) + ... + \(3^{2002}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=30+32+34+...+32002
=> 9S=32+34+36+...+32004
=> 9S-S=(32+34+...+32004)-(30+32+34+...+32002)
=>8S=32004-1=> S=\(\frac{3^{2004}-1}{8}\)
vậy...
ta có S=3^0+3^2+3^4+3^6+...+3^2002(1)
nhân cả hai vế với 3^2,ta có
3^2S=3^2(3^0+3^2+3^4+3^6+...+3^2002)
9S=3^2+3^4+3^6+3^8+...+3^2004(2)
lấy(2) trừ (1)ta có
9S-S=(3^2+3^4+3^6+3^8+...+3^2002) - (3^0+3^2+3^4+3^6+...+3^2002)
8S=3^2+3^4+3^6+3^8+...+3^2004-3^0-3^2-3^4-3^6-...3^2002
8S=3^2004-3^0
8S=3^2004-1
S=(3^2004-1)/8
Đề sai nhé: phải là 8S-..+1 nhé
Có: \(3^2.S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow3^2S-S=3^{2004}-1\)\(\Leftrightarrow8S=3^{2004}-1\Leftrightarrow8S-3^{2004}+1=0\)
\(S=3^0+3^2+3^4+3^6+.....+3^{2002}\)
\(3S=3^2+3^{\text{4}}+3^6+3^8+......+3^{2004}\)
\(3S-S=\left(3^2+3^4+3^6+...+3^{2004}\right)-\left(3^0+3^2+3^4+....+3^{2002}\right)\)
\(3S-S=3^{2004}-3^0\)
\(S=\frac{3^{2004}-3^0}{2}\)
S = 30 + 32 + 34 + .... + 32002
32S = 32 ( 30 + 32 + 34 + .... + 32002 )
= 32 + 34 + 36 + .... + 32004
32S - S = ( 32 + 34 + 36 + .... + 32004 ) - ( 30 + 32 + 34 + .... + 32002 )
8S = 32004 - 1
\(\Rightarrow S=\frac{3^{2004}-1}{8}\)
Ta có :
S = 30 + 32 + 34 + 36 + ....... + 32002 ( 1 )
9S = 32 + 34 + 36 + ....... + 32004 ( 2 )
Lấy ( 1 ) - ( 2 ) ta có
9S - S = ( 32 + 34 + 36 + ....... + 32004 ) - ( 30 + 32 + 34 + 36 + ....... + 32002 )
8S = 32004 - 30 = 32004 - 1
S = \(\frac{3^{2004}-1}{8}\)
Nhân S với 32 ta có :
9S = 32 + 34 + ... + 32002 + 32004
9S - S = ( 32 + 34 + ... + 32004 ) - ( 32 + 34 +... + 32002)
8S = 32004-3 = 3 ( 32003 - 1 )
=> 8S = \(\frac{3}{8}\). ( 32003 - 1 )
k bít đúng k nữa , thầy cko lm mà thấy nó hơi khó hỉu pn , ráng hỉu nha =))
S=(3^1+3^2+3^3)+(3^4+3^5+3^6)+...+(3^2000+3^2001+3^2002)
S=3.(1+3+3^2)+3^4.(1+3+3^2)+...+3^2000.(1+3+3^2)
S=3.14+3^4.14+...+3^2000.14
S=(3+3^4+...+3^2000).14
=> S chia hết cho 7