Cho tam giác ABC vuông tại A , biết AC = 10 cm ,góc C= 30 độ . hãy giải tam giác vuông ABC
Lớp mấy k qan tâm. Ak nhầm, k qan trọng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(sinC=\frac{AB}{BC}=\frac{1}{2}\) nên \(BC=2AB=6\)
Suy ra , \(AC=\sqrt{BC^2-AB^2}=3\sqrt{3}\) và góc \(B=60^0\)
****
xét tam giác vuông ABC:
góc A+góc B+góc c=180 độ
90 độ+góc B+30 độ=180 độ
120 độ+góc B=180 độ
góc B=180-120
góc B=60 độ
tick nha
Ta co tinh chat canh doi dien voi goc 30do thi =1/2 canh huyen.o bai nay thi ta giai nhu sau.goi BC=a=>AB=a/2.ap dung PYTAGO =>(a/2)^2+100=a^2=>a= 11,55
ΔABC(góc A =900)
ta có:góc B+gócC=900 độ(hai góc phụ nhau)
suy ra góc B=900 trừ góc C
=900-300=600
suy ra gócB bằng 600
lại có :AB=AC.tan300=10.tan30o
\(\approx5,774\left(cm\right)\)
có BC=\(\dfrac{AC}{\cos30^0}\)
\(\approx11,547\)
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
a) Xét tam giác ABD và tam giác HBD có :
\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)
\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )
Chung BD
\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )
\(\Rightarrow AD=DH\left(đpcm\right)\)
b) Xét tam giác DHC vuông tại H có \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )
Mà \(AD=DH\)( câu a )
\(\Rightarrow AD< CD\)
c) \(\widehat{ABC}=180^o-90^o-30^o=60^o\)
Ta có BD là tia phân giác \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)
Xét tam giác BDC có \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)
\(\Rightarrow\)tam giác BDC cân tại D
Mà DH là đường cao \(\left(DH\perp BC\right)\)
\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC
\(\Rightarrow BH=HC\)
Xét tam giác KBH và tam giác KCH có :
\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)
BH = HC
Chung KH
\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)
\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều
\(\Rightarrow\widehat{BKC}=60^o\)
Từ (1) \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)
\(\Rightarrow\widehat{BKH}=30^o\)
Xét tam giác BDK có \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)
\(\Rightarrow\Delta BDK\)cân tại D
Mà AD là đường cao \(\left(AD\perp BK\right)\)
\(\Rightarrow\)AD là trung tuyến tam giác BDK
\(\Rightarrow BA=AK\)
Xét \(\Delta KBC\)có
KH là trung tuyến ( BH = HC )
CA là trung tuyến ( BA = AK )
KH và CA cắt nhau tại D
\(\Rightarrow\)D là trọng tâm tam giác BKC
d) Ta có \(\frac{KB}{2}=AK\)( do AB = AK )
\(AD+AK>\frac{KB}{2}\)
Mà KC = KB
\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)
Vậy ...
1: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(BC^2=6^2+8^2=100\)
=>BC=10(cm)
XétΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
ΔABC vuông tại A
=>\(\widehat{B}+\widehat{C}=90^0\)
=>\(\widehat{B}+37^0=90^0\)
=>\(\widehat{B}=53^0\)
2: Xét tứ giác AEKF có
\(\widehat{AEK}=\widehat{AFK}=\widehat{FAE}=90^0\)
=>AEKF là hình chữ nhật
=>AK=EF và AK cắt EF tại trung điểm của mỗi đường
=>I là trung điểm chung của AK và EF và AK=EF
\(IA=IK=\dfrac{AK}{2}\)
\(IE=IF=\dfrac{EF}{2}\)
mà AK=EF
nên IA=IK=IE=IF=AK/2
=>\(IE\cdot IF=\dfrac{1}{2}\cdot AK\cdot\dfrac{1}{2}\cdot AK=\dfrac{1}{4}\cdot AK^2\)
=>\(4\cdot EI\cdot IF=AK^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(BK\cdot KC=AK^2\left(2\right)\)
Từ (1) và (2) suy ra \(4\cdot EI\cdot IF=BK\cdot KC\)
Hãy giải tam giác vuông ABC ??
AB=5 cm nha Phuong