tìm n bt n>0 sao cho 1!+2!+3!+...+n! là 1 số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
Thu voi n=1;2;3;4 ta chon n=1;3
Voi n >4 => 1!+2!+3!1!+2!+3!+...+n!=1!+2!+3!+4!+5!+...+n!=33+A0¯1!+2!+3!+...+n!=1!+2!+3!+4!+5!+...+n!=33+A0¯(vi 5!;6!;... co tan cung la 0) hay tong nay co tan cung la 3 => Tong nay khong phai là so chinh phuong vi khong co so chinh phuong nao co tan cung la 3 => loai
Vay n=1;3
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
thắng mô ở trường mà k bt hậy
Tìm số tự nhiên n ( n > 0 ) sao cho tổng của: 1! + 2! + 3! + 4! + . . . + n! là một số chính phương.
Với n = 1 thì 1! = 1 = 1² là số chính phương .
Với n = 2 thì 1! + 2! = 3 không là số chính phương
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.
+) Với n = 1 thì 1! = 1 = 1² là số chính phương .
+) Với n = 2 thì 1! + 2! = 3 không là số chính phương
+) Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương
+) Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương .
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3
Nếu n=1 thì S=1 chính phương
Nếu n=2 thì S=3 ko chính phương
Nếu n=3 thì S=9 chính phương
Nếu n=4 thì S=33 ko chính phương
Nếu n>=5 thì S = 1+1.2+1.2.3+1.2.3.4+1.2.3.4.5+....+1.2.3....n
1+2+9+24+....0 +....0 +.....+....0 = ....3 ko chính phương ( S là tổng 1!+2!+...+n!)
Thử với n=1; 2; 3; 4 ta chọn n = 1; 3
Với n > 4 => 1! + 2! + 3! + 1! + 2! + 3!+ ... +n! = 1! + 2! + 3! + 4! + 5!+ ... + n! = 33 + A0¯1! + 2! + 3!+ ... + n! = 1! + 2! + 3! + 4! + 5! +... + n! = 33 + A0¯(vì 5!; 6!; ... có tận cùng là 0) hay tổng này có tận cùng là 3 => Tổng này không phải là số chính phương vì không có số chính phương nào có tận cùng là 3 => lọai
Vậy n = 1; 3
n = 15. Dãy số trên sẽ bằng 11838932