K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2021

Bài 7:

a)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge m+1\\x\ge\dfrac{m}{4}\end{matrix}\right.\)

TH1: \(m+1< \dfrac{m}{4}\Rightarrow m< -\dfrac{4}{3}\)

\(\Rightarrow x\ge\dfrac{m}{4}\)\(\Rightarrow x\in\)\([\dfrac{m}{4};+\)\(\infty\)\()\)

Để hàm số xác định với mọi x dương \(\Leftrightarrow\)\(\left(0;+\infty\right)\subset\)\([\dfrac{m}{4};+\)\(\infty\)\()\)

\(\Leftrightarrow\dfrac{m}{4}\ge0\Leftrightarrow m\ge0\) kết hợp với \(m< -\dfrac{4}{3}\Rightarrow m\in\varnothing\)

TH2:\(m+1\ge\dfrac{m}{4}\Rightarrow m\ge-\dfrac{4}{3}\)

\(\Rightarrow x\ge m+1\)\(\Rightarrow\)\(x\in\)\([m+1;+\)\(\infty\))

Để hàm số xác định với mọi x dương \(\Leftrightarrow\)\(\left(0;+\infty\right)\subset\)\([m+1;\)\(+\infty\)\()\)

\(\Leftrightarrow m+1\le0\Leftrightarrow m\le-1\) kết hợp với \(m\ge-\dfrac{4}{3}\)

\(\Rightarrow m\in\left[-\dfrac{4}{3};-1\right]\)

Vậy...

b)ĐKXĐ:\(\left\{{}\begin{matrix}x\ge2-m\\x\ne-m\end{matrix}\right.\)\(\Rightarrow x\in\)\([2-m;+\)\(\infty\)) (vì \(-m< 2-m\))

Để hàm số xác ddingj với mọi x dương

\(\Leftrightarrow\left(0;+\infty\right)\subset\)\([2-m;+\)\(\infty\))

\(\Leftrightarrow2-m\le0\Leftrightarrow m\ge2\)

Vậy...

23 tháng 8 2021

Bài 9:

a)Đặt \(f\left(x\right)=x^2+2x-2\)

TXĐ:\(D=R\)

TH1:\(x\in\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-\infty;-1\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-\left(x_2^2+2x_2-2\right)}{x_1-x_2}=x_1+x_2+2\)

Vì \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow x_1+x_2< -1+-1=-2\)\(\Leftrightarrow x_1+x_2+2< 0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(-\infty;-1\right)\)

TH2:\(x\in\left(-1;+\infty\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{x_1^2+2x_1-2-\left(x_2^2+2x_2-2\right)}{x_1-x_2}=x_1+x_2+2>0\)

Suy ra hàm đb trên \(\left(-1;+\infty\right)\)

Vậy...

b)Đặt \(f\left(x\right)=\dfrac{2}{x-3}\)

TXĐ:\(D=R\backslash\left\{3\right\}\)

TH1:\(x\in\left(-\infty;3\right)\)

Lấy \(x_1;x_2\in\left(-\infty;3\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{2}{x_1-3}-\dfrac{2}{x_2-3}}{x_1-x_2}=\dfrac{-2}{\left(x_1-3\right)\left(x_2-3\right)}\)

Vì \(x_1;x_2\in\left(-\infty;3\right)\Rightarrow x_1-3< 0;x_2-3< 0\Rightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(-\infty;3\right)\)

TH2:\(x\in\left(3;+\infty\right)\)

Lấy \(x_1;x_2\in\left(3;+\infty\right)\)\(:x_1\ne x_2\) 

Xét \(I=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{2}{x_1-3}-\dfrac{2}{x_2-3}}{x_1-x_2}=\dfrac{-2}{\left(x_1-3\right)\left(x_2-3\right)}\)

Vì \(x_1;x_2\in\left(3;+\infty\right)\Rightarrow x_1-3>0;x_2-3>0\Rightarrow\left(x_1-3\right)\left(x_2-3\right)>0\)

\(\Rightarrow I< 0\)

Suy ra hàm nb trên \(\left(3;+\infty\right)\)

Vậy hàm nb trên \(\left(-\infty;3\right)\) và \(\left(3;+\infty\right)\)

 

10 tháng 10 2018

781 . 152018

781\(\equiv\)( mod 10 )

710\(\equiv\)9 ( mod 10 )

780\(\equiv\)1 ( mod 10 )

781\(\equiv\)7 ( mod 10 )

Vậy chữ số tận cùng của 781 là 1

152018\(\equiv\)( mod 10 )

158\(\equiv\)5 ( mod 10 )

1580\(\equiv\)5 ( mod 10 )

15960\(\equiv\)5 ( mod 10 )

151920\(\equiv\)5 ( mod 10 )

152000\(\equiv\)5 ( mod 10 )

152007\(\equiv\)5 ( mod 10 )

152014\(\equiv\)5 ( mod 10 ) 

152018\(\equiv\)5 ( mod 10 )

Vậy chữ số tận cùng của 152018 là 5

\(\Rightarrow\)Chữ số tận cùng của 781 . 152018 là 7 . 5 = 35

Vậy chữ số tận cùng của 781 . 152018 là 5

Hk tốt

19 tháng 5 2022

đau lx r 

26 tháng 2 2022

Bn cần bài nào trong 2 bài nhỉ?

26 tháng 2 2022

e tách câu hỏi ra nhe tạm thời cj giúp mụt câu nhe

AMOQ
MBNO
QOPD
ONCP
MNPQ
ABCD

31 tháng 12 2021

Thank you bạn.🥰

14 tháng 6 2017

45+45=90

12+78=90

14 tháng 6 2017

45 + 45 = 900

12 + 78 = 90 

~ Ủng hộ mk nhé các bạn ~

e: Ta có: \(\left(x+1\right)\left(x+2\right)=444222\)

\(\Leftrightarrow x^2+3x-444220=0\)

\(\text{Δ}=3^2-4\cdot1\cdot\left(-444220\right)=1776889\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-1333}{2}=-668\\x_2=\dfrac{-3+1333}{2}=665\end{matrix}\right.\)

24 tháng 9 2021

lớp 6 be like ;-;