K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Ta có:

\(a^4+b^4\ge a^3+b^3\)  \(\left(1\right)\)

\(\Leftrightarrow\)  \(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)  (vì  \(a+b=2\))

\(\Leftrightarrow\)  \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow\)  \(a^4-a^3b-ab^3+b^4\ge0\)

\(\Leftrightarrow\)  \(a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\)  \(\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\)  \(\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)  \(\left(2\right)\)

Bất đẳng thức  \(\left(2\right)\)  luôn đúng (do  \(\left(a-b\right)^2\ge0\)  và  \(a^2+ab+b^2=\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\ge0\) ), mà các phép biến đổi trên tương đương nên bất đẳng thức \(\left(1\right)\)  được chứng minh. 

Đẳng thức trên xảy ra  khi và chỉ khi  \(a=b\)

29 tháng 6 2016

\(a^3-a^2b+ab^2-6b^3=0\)

\(\Leftrightarrow\left(a-2b\right)\left(a^2+ab+3b^2\right)=0\left(1\right)\)

Vì a>b>0 =>a2+ab+3b2>0 nên từ (1) ta có a=2b

Vậy biểu thức \(A=\frac{a^4-4b^4}{b^4-4a^4}=\frac{16b^4-4b^4}{b^4-64b^4}=\frac{12b^4}{-63b^4}=-\frac{4}{21}\)

2 tháng 3 2021
Không làm mà đòi có ăn thì chỉ ăn cứt ăn đâù buồi
10 tháng 2 2018

Áp dụng bđt : x^2+y^2+z^2 >= xy+yz+zx và x^2+y^2+z^2 >= (x+y+z)^2/3 thì :

a^4+b^4+c^4 >= a^2b^2+b^2c^2+c^2a^2 >= (ab+bc+ca)^2/3 = 4^2/3 = 16/3

Dấu "=" xảy ra <=> a=b=c=\(+-\frac{2}{\sqrt{3}}\)

Vậy ...............

Tk mk nha

10 tháng 2 2018

khó tả

7 tháng 3 2018

\(\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge2018\)

\(\Leftrightarrow\frac{a^4+b^4}{a^3+b^3}+\frac{b^4+c^4}{b^3+c^3}+\frac{c^4+a^4}{c^3+a^3}\ge a+b+c\)

\(\LeftrightarrowΣ_{cyc}\frac{a^3\left(a-c\right)+b^3\left(b-c\right)}{a^3+b^3}\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(a-b\right)\left(\frac{a^3}{c^3+a^3}-\frac{b^3}{b^3+c^3}\right)\ge0\)

\(\LeftrightarrowΣ_{cyc}\left(\left(a-b\right)^2\frac{c^3\left(a^2+ab+b^2\right)}{\left(a+c\right)\left(a^2-ac+c^2\right)\left(b+c\right)\left(b^2-bc+c^2\right)}\right)\ge0\)

BĐT cuối cùng liếc qua cũng biết thừa đúng :) nên ta có ĐPCM

Dấu "=" <=> a=b=c 

Ủng hô va` kb với mình nhé ^^

7 tháng 3 2018

Bài này làm dài lắm

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).Vậy điều giả sử trên là sai, 
a,b,c là 3 số dương.

24 tháng 9 2015

Giả sử a<0,vì abc>0 nên bc<0.Mặt khác thì ab+ac+bc>0<=>a(b+c)>-bc>0=>a(b+c)>0,mà a<0 nên b+c<0=>a+b+c<0(vô lý).

Vậy điều giả sử trên là sai, 
Do đó a,b,c là 3 số dương.

2 tháng 7 2016

đề bài kì tek

3 tháng 7 2016

bạn tham khảo cho 0<=a,b,c<=1 cmr: a+b2+c3-a.b-a.c-b.c <=1? | Yahoo Hỏi & Đáp