Cho tam giác ABC vuông tạiA (AB<AC). Tia phân giác góc B cắt AC tại M, biết MC=MB. Tính số đo góc C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=CH^2+AH^2\)
\(\Leftrightarrow AH^2=AC^2-CH^2=20^2-16^2=144\)
hay AH=12(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{16}=9\left(cm\right)\)
Ta có: BC=BH+CH(H nằm giữa B và C)
nên BC=9+16=25(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=25^2-20^2=225\)
hay AB=15(cm)
Vậy: AB=15cm; AH=12cm; BC=25cm; BH=9cm
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=BH^2+CH^2\)
\(\Leftrightarrow AC^2=5^2+12^2=169\)
hay AC=13(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=\dfrac{AH^2}{HC}=\dfrac{12^2}{5}=28.8\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=28,8+5=33,8(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=33.8^2-13^2=973.44\)
hay \(AB=31.2cm\)
Vậy: AC=13cm; AB=31,2cm; BC=33,8cm; BH=28,8cm
Áp dụng định lí Pytago vào ΔBAH vuông tại H, ta được:
\(AH^2+HB^2=AB^2\)
\(\Leftrightarrow HB^2=AB^2-AH^2=30^2-24^2=324\)
hay HB=18(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{24^2}{18}=32\left(cm\right)\)
Ta có: BC=HB+HC(H nằm giữa B và C)
nên BC=18+32=50(cm)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\LeftrightarrowÁC^2=BC^2-AB^2=50^2-30^2=1600\)
hay AC=40cm
Vậy: AC=40cm; CH=32cm; BC=50cm; BH=18cm
a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)
=>\(BC^2=4^2+7,5^2=72,25\)
=>\(BC=\sqrt{72,25}=8,5\)
Xét ΔABC vuông tại A có \(cotB=\dfrac{BA}{AC}\)
=>\(cotB=\dfrac{4}{7,5}=\dfrac{8}{15}\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
Xét ΔABH vuông tại H có \(cotB=\dfrac{BH}{AH}\)
=>\(\dfrac{BH}{AH}=\dfrac{8}{15}\)
=>\(BH=\dfrac{8}{15}\cdot AH\)
\(AB^2=BH\cdot BC=\dfrac{8}{15}\cdot AH\cdot BC\)
Xét tứ giác ACEB có
O là trung điểm của AE
O là trung điểm của BC
Do đó: ACEB là hình bình hành
mà \(\widehat{BAC}=90^0\)
nên ACEB là hình chữ nhật
a). Xét t/g : ABD và HBD có:
góc A = góc H = 90\(^o\)
BD cạnh chung
góc ABD = góc HBD ( BD là tia ph/giác góc B)
do đó :
t/g ABD = t/g HBD ( cạnh huyền - góc nhọn).
b, Vì t/g ABD = t/g HBD
=> AD = HD và AB=HB (1) ( 2 cạnh tương ứng).
Xét t/g ADE và HDC có:
góc A = góc H = 90\(^o\)
góc D1 = góc D2 ( đối đỉnh).
AD = HD ( cmt)
do đó : t/g ADE = t/g HDC ( cạnh góc vuông - góc nhọn kề nó).
=> AE = HC ( 2) ( 2 cạnh tương ứng).
Từ (1) và (2) suy ra : AB + AE = HB + HC
Hay BE = BC
=> T/g BEC cân tại B.
c).
Theo cmt ta có AD = DH
Xét t/g vuông DHC vuông tại H có:
DH<DC
Do đó:
AD < DC
a: \(BC=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=3*4/5=2,4cm
BH=4^2/5=3,2cm
b: Xét ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: ΔBAC đồng dạng với ΔBHA
=>BA/BH=BC/BA
=>BA^2=BH*BC
a: \(CB=\sqrt{4^2+3^2}=5\left(cm\right)\)
AH=4*3/5=2,4cm
BH=4^2/5=3,2cm
CD là phân giác
=>AD/AC=DB/BC
=>AD/3=DB/5=(AD+DB)/(3+5)=4/8=0,5
=>AD=1,5cm
b: Xet ΔBAC vuông tại A và ΔBHA vuông tại H có
góc B chung
=>ΔBAC đồng dạng với ΔBHA
c: Xét ΔBAC vuông tại A có AH là đường cao
nên AB^2=BH*BC