Rút gọn biểu thức
x - 57 - [(49 + x) - ( 57 - x ) ]
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(x-15)-[(57+x)-(23-x)]
=x-15-[57+x-23+x]
=x-15-[(57-23)+(x+x)]
=x-15-[34+2x]
=x-15-34-2x
=x-2x-(15+34)
=(-x)-49
Bài 1:
\(\dfrac{x^2-3}{x+\sqrt{3}}=\dfrac{\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)}{x+\sqrt{3}}=x-\sqrt{3}\)
Bài 2:
a) Ta có: \(A=\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}\)
\(=4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}\)
\(=4\sqrt{x+1}\)
b) Để A=16 thì \(\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
hay x=15
\(x^3-5x=0\Rightarrow x\left(x^2-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x^2=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\end{matrix}\right.\)
Ta có: \(x^3-5x=0\)
\(\Leftrightarrow x\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\sqrt{5}\\x=-\sqrt{5}\end{matrix}\right.\)
Ez bạn ơi
471/709 x 49/57 + 479/709 x 8/57
= 471/709 x (49/57 + 8/57)
=471/709 x 1
Chúc bạn học tốt ! Nếu thấy mình lm đúng thì k cho mình nha :)
Để thu gọn biểu thức trên thành tổng bình phương của 2 đa thức, ta cần mở ngoặc và thực hiện các phép tính.
Biểu thức ban đầu là: 2x^2 + 2(x+1)^2 + 3(x+2)^2 + 4(x+3)^2
Đầu tiên, ta mở ngoặc: 2x^2 + 2(x^2 + 2x + 1) + 3(x^2 + 4x + 4) + 4(x^2 + 6x + 9)
Tiếp theo, ta nhân các hạng tử trong từng ngoặc: 2x^2 + 2x^2 + 4x + 2 + 3x^2 + 12x + 12 + 4x^2 + 24x + 36
Tiếp theo, ta tổng hợp các hạng tử có cùng mũ: (2x^2 + 2x^2 + 3x^2 + 4x^2) + (4x + 12x + 24x) + (2 + 12 + 36)
Kết quả cuối cùng là: 11x^2 + 40x + 50
Vậy, biểu thức ban đầu được thu gọn thành tổng bình phương của 2 đa thức là 11x^2 + 40x + 50.
a) x + 1 5 = − 4 9
x = − 4 9 − 1 5 x = − 29 45
b) 5 7 − x = − 9 21
x = 5 7 + 9 21 x = 8 7
\(x-57-\left[\left(49+x\right)-\left(57-x\right)\right]=x-57-\left(49+x-57+x\right)=x-57-\left(2x-8\right)=x-57-2x+8=-x-49\)
-x-49
Bạn ơi