K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2021

\(\frac{2}{x-1}-\frac{3x^2}{x^3-1}=\frac{x}{x^2+x+1}\)

ĐKXĐ : x khác 1

pt <=> \(\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

<=> \(\frac{2x^2+2x+2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

<=> \(\frac{2x^2+2x+2-3x^2-x^2+x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

<=> \(\frac{-2x^2+3x+2}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

=> -2x2 + 3x + 2 = 0

<=> -2x2 - x + 4x + 2 = 0

<=> -x( 2x + 1 ) + 2( 2x + 1 ) = 0

<=> ( 2x + 1 )( 2 - x ) = 0

<=> x = -1/2 hoặc x = 2 ( tm )

Vậy ...

20 tháng 2 2021

\(\frac{2}{x-1}-\frac{3x^2}{x^3-1}=\frac{x}{x^2+x+1}\)ĐK : x \(\ne\)1

\(\Leftrightarrow\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{3x^2}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)

\(\Rightarrow2x^2+2x+2-3x^2=x^2-x\)

\(\Leftrightarrow-x^2+2x+2-x^2+x=0\)

\(\Leftrightarrow-2x^2+3x+2=0\Leftrightarrow-\left(2x+1\right)\left(x-2\right)=0\Leftrightarrow x=-\frac{1}{2};x=2\)

Vậy tập nghiệm của phương trình là S = { 1/2 ; 2 } 

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

20 tháng 11 2021

\(ĐK:x\ne3;x\ne2\\ PT\Leftrightarrow\dfrac{x^2+3x+2}{x-3}\left(\dfrac{x+1}{x-2}+1+\dfrac{x^2}{x-2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\dfrac{\left(x+1\right)\left(x+2\right)}{x-3}=0\\\dfrac{x^2+x+2}{x-2}=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x^2+x+2=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\end{matrix}\right.\)

a: 7x+35=0

=>7x=-35

=>x=-5

b: \(\dfrac{8-x}{x-7}-8=\dfrac{1}{x-7}\)

=>8-x-8(x-7)=1

=>8-x-8x+56=1

=>-9x+64=1

=>-9x=-63

hay x=7(loại)

4 tháng 3 2022

a, \(7x=-35\Leftrightarrow x=-5\)

b, đk : x khác 7 

\(8-x-8x+56=1\Leftrightarrow-9x=-63\Leftrightarrow x=7\left(ktm\right)\)

vậy pt vô nghiệm 

2, thiếu đề 

=>\(\dfrac{3x^3-9x^2+9x-2x^3+2x^2-6x}{\left(x^2-3x+3\right)\left(x^2-x+3\right)}=-1\)

=>x^3-7x^2+3x=-[(x^2+3)^2-4x(x^2+3)+3x^2]

=>x^3-7x^2+3x+(x^2+3)^2-4x(x^2+3)+3x^2=0

 

=>x^3-4x^2+3x+x^4+6x^2+9-4x^3-12x=0

=>x^4-3x^3+2x^2-9x+9=0

=>(x-3)(x-1)(x^2+x+3)=0

=>x=3;x=1

 

13 tháng 8 2021

1/ ( x-3) 2=16

\(\Rightarrow\left[{}\begin{matrix}x-3=4\\x-3=-4\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-1\end{matrix}\right.\)

2/ (3x-1)3=8

\(\Rightarrow3x-1=2\\ \Rightarrow3x=3\\ \Rightarrow x=1\)

3/ (x-11)3=-27

\(\Rightarrow x-11=-3\\ \Rightarrow x=8\)

phần 4 mình ko rõ đề

13 tháng 8 2021

đề câu 4 

 \(x^3-3x^2+3x-1=-64\)

1) Ta có: \(x^3-3x^2+2x=0\)

\(\Leftrightarrow x\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={0;1;2}

2) Ta có: \(\dfrac{x^2-x-1}{x+1}=2x-1\)

\(\Leftrightarrow x^2-x-1=\left(2x-1\right)\left(x+1\right)\)

\(\Leftrightarrow x^2-x-1=2x^2+2x-x-1\)

\(\Leftrightarrow x^2-x-1-2x^2-x+1=0\)

\(\Leftrightarrow-x^2-2x=0\)

\(\Leftrightarrow-x\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy: S={0;-2}

28 tháng 6 2021

       3x2+2x=0

<=>x(3x+2)=0

<=>x=0 hoặc 3x+2=0

từ đó bạn giải ra x thuộc{0;-2/3}

chúc bạn học tốt và nhớ tích đúng cho mình

 

11 tháng 8 2021

1/ \(2\left(x-5\right)=\left(-x-5\right)\)

\(\Leftrightarrow2x-10=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

==========

2/ \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow-x=-7\)

\(\Leftrightarrow x=7\)

Vậy: \(S=\left\{7\right\}\)

==========

3/ \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1=x-19\)

\(\Leftrightarrow0x=0\)

Vậy: \(S=\left\{x|x\text{ ∈ }R\right\}\) 

===========

4/ \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2=10-15x\)

\(\Leftrightarrow14x=1\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy: \(S=\left\{\dfrac{1}{14}\right\}\)

==========

5/ \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x=7x+1\)

\(\Leftrightarrow-2x=6\)

\(\Leftrightarrow x=-3\)

Vậy: \(S=\left\{-3\right\}\)

[---]

Chúc bạn học tốt.

11 tháng 8 2021

1. \(2\left(x-5\right)=-x-5\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

Vậy \(S=\left\{\dfrac{5}{3}\right\}\)

2. \(2\left(x+3\right)-3\left(x-1\right)=2\)

\(\Leftrightarrow2x+6-3x+3=2\)

\(\Leftrightarrow x=7\)

Vậy \(S=\left\{7\right\}\)

3. \(4\left(x-5\right)-\left(3x-1\right)=x-19\)

\(\Leftrightarrow4x-20-3x+1-x+19=0\)

\(\Leftrightarrow0x=0\)

Vậy \(S=\left\{x\in R\right\}\)

4. \(7-\left(x-2\right)=5\left(2-3x\right)\)

\(\Leftrightarrow7-x+2-10+15x=0\)

\(\Leftrightarrow14x-1=0\)

\(\Leftrightarrow x=\dfrac{1}{14}\)

Vậy \(S=\left\{\dfrac{1}{14}\right\}\)

4. \(2x-\left(5-3x\right)=7x+1\)

\(\Leftrightarrow2x-5+3x-7x-1=0\)

\(\Leftrightarrow-2x-6=0\)

\(\Leftrightarrow x=-3\)

Vậy \(S=\left\{-3\right\}\)

a) ĐKXĐ: \(x\notin\left\{-1;0\right\}\)

Ta có: \(\dfrac{x+3}{x+1}+\dfrac{x-2}{x}=2\)

\(\Leftrightarrow\dfrac{x\left(x+3\right)}{x\left(x+1\right)}+\dfrac{\left(x+1\right)\left(x-2\right)}{x\left(x+1\right)}=\dfrac{2x\left(x+1\right)}{x\left(x+1\right)}\)

Suy ra: \(x^2+3x+x^2-3x+2=2x^2+2x\)

\(\Leftrightarrow2x^2+2-2x^2-2x=0\)

\(\Leftrightarrow-2x+2=0\)

\(\Leftrightarrow-2x=-2\)

hay x=1(nhận)

Vậy: S={1}

b) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(6x+1\right)\left(x+7\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+42x+x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

c) ĐKXĐ: \(x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{5}{3x+2}=2x-1\)

\(\Leftrightarrow5=\left(3x+2\right)\left(2x-1\right)\)

\(\Leftrightarrow6x^2-3x+4x-2-5=0\)

\(\Leftrightarrow6x^2+x-7=0\)

\(\Leftrightarrow6x^2-6x+7x-7=0\)

\(\Leftrightarrow6x\left(x-1\right)+7\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(6x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\6x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\6x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{7}{6}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{1;-\dfrac{7}{6}\right\}\)

d) ĐKXĐ: \(x\ne\dfrac{2}{7}\)

Ta có: \(\left(2x+3\right)\cdot\left(\dfrac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\dfrac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(2x+3\right)\cdot\left(\dfrac{3x+8+2-7x}{2-7x}\right)-\left(x-5\right)\left(\dfrac{3x+8+2-7x}{2-7x}\right)=0\)

\(\Leftrightarrow\left(2x+3-x+5\right)\cdot\dfrac{-4x+6}{2-7x}=0\)

\(\Leftrightarrow\left(x+8\right)\cdot\left(-4x+6\right)=0\)(Vì \(2-7x\ne0\forall x\) thỏa mãn ĐKXĐ)

\(\Leftrightarrow\left[{}\begin{matrix}x+8=0\\-4x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\\-4x=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-8\left(nhận\right)\\x=\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-8;\dfrac{3}{2}\right\}\)

Bài 3: 

b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)

hay \(x\in\left\{0;-1\right\}\)

c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)

=>x-1=0

hay x=1

d: \(\Leftrightarrow6x^2-3x-4x+2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)

hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)