\(\text{x^2 – 16 - y^2 + 8y}\)
Phân tích đa thức thành nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-y^2+8x-16\)
\(=\left(2x\right)^2-\left(y-4\right)^2=\left(2x-y+4\right)\left(2x+y-4\right)\)
4x2 - y2 + 8y - 16
= 4x2 - (y2 - 8y + 16)
= (2x)2 - (y - 4)2
= [2x - (y - 4)][2x + (y - 4)]
= (2x - y +4)(2x + y - 4)
x2 + 2xy - 8y2 + 2xz + 14yz - 3z2
= ( x2 + y2 +z2 + 2xy + 2yz ) + ( -9x2 + 12yz - 4x2 )
= ( x + y +z )2 - [ (3x)2 - 2.3.x.2y + ( 2x)2
= ( x + y +z )2 - ( 3y - 2x)2
= ( x + y +z - 3y + 2x )(x+ y + z + 3y - 2x )
a) \(x^2-3x=x\left(x-3\right)\)
b) \(10x\left(x-y\right)-8y\left(x-y\right)=2\left(x-y\right)\left(5x-4y\right)\)
c) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
D = x2 - 4x - y2 - 8y - 12
= (x2 - 4x + 4) - (y2 + 8y + 16)
= (x - 2)2 - (y + 4)2
= (x + y + 2)(x - y - 6)
\(D=x^2-4x-y^2-8y-12\)
\(=x^2-4x-y^2-8y+4-16\)
\(=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)\)
\(=\left(x-2\right)^2-\left(y+4\right)^2\)
\(=\left(x-2-y-4\right)\left(x-2+y+4\right)\)
\(=\left(x-y-6\right)\left(x+y+2\right)\)
=(x-y-2y)[(x-y)^2+2y(x-y)+4y^2]
=(x-3y)(x^2-2xy+y^2+2xy-2y^2+4y^2)
=(x-3y)(x^2+3y^2)
\(\left(x-y\right)^3-8y^3\)
\(=\left(x-y\right)^3-\left(2y\right)^3\)
\(=\left[\left(x-y\right)-2y\right]\left[\left(x-y\right)^2+2y\left(x-y\right)+\left(2y\right)^2\right]\)
\(=\left(x-y-2y\right)\left(x^2-2xy+y^2+2xy-2y^2+4y^2\right)\)
\(=\left(x-3y\right)\left(x^2+3y^2\right)\)
c: \(x^2-4+3\left(x-2\right)^2\)
\(=\left(x-2\right)\left(x+2\right)+\left(x-2\right)\left(3x-6\right)\)
\(=\left(x-2\right)\left(x+2+3x-6\right)\)
\(=\left(4x-4\right)\left(x-2\right)\)
\(=4\left(x-1\right)\left(x-2\right)\)
\(\left(x+y\right)^2-16\)
\(=\left(x+y\right)^2-4^2\)
\(=\left[\left(x+y\right)-4\right]\left[\left(x+y\right)+4\right]\)
\(=\left(x+y-4\right)\left(x+y+4\right)\)
\(10x\left(x-y\right)-8y\left(y-x\right)\)
\(=10x\left(x-y\right)+8y\left(x-y\right)\)
\(=\left(x-y\right)\left(10x+8y\right)\)
\(=2\left(x-y\right)\left(5x+4y\right)\)
\(=x^2-\left(y-4\right)^2\)
\(=\left(x-y+4\right)\left(x+y-4\right)\)
\(=x^2-\left(y^2-8y+16\right)=x^2-\left(y-4\right)^2=\left(x-y+4\right)\left(x+y-4\right)\)