\(M=\frac{2}{xy}+\frac{3}{^{x^2+y^2}}\)
với x,y dương và x+y=1. Tìm GTNN của M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(M=\frac{2x+y}{xy}+\frac{3}{2x+y}=\frac{2x+y}{2}+\frac{3}{2x+y}\)
\(=\left(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\right)+\frac{5}{8}.\frac{2x+y}{2}\)
Có: \(\frac{3}{8}.\frac{2x+y}{2}+\frac{3}{2x+y}\ge2\sqrt{\frac{3}{8}.\frac{2x+y}{2}.\frac{3}{2x+y}}=\frac{3}{2}\)
Dấu '=' xảy ra <=> \(\frac{3}{8}.\frac{2x+y}{2}=\frac{3}{2x+y}\)
Có: \(\frac{5}{8}.\frac{2x+y}{2}\ge\frac{5}{8}\sqrt{2xy}=\frac{5}{4}\)
Dấu '=' xảy ra <=> 2x=y và xy=2
Do đó \(M\ge\frac{3}{2}+\frac{5}{4}=\frac{11}{4}\)
Dấu '=' xảy ra <=> x=1 và y=2
Vậy GTNN của M là 11/4 khi x=1 và y=2
Ta sẽ chứng minh: \(\frac{a^3}{a^2+ab+b^2}\ge\frac{2a-b}{3}\) với a;b dương
Thật vậy, BĐT tương đương:
\(3a^3\ge\left(2a-b\right)\left(a^2+ab+b^2\right)\)
\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) (luôn đúng)
Áp dụng: \(\Rightarrow S\ge\frac{2x-y}{3}+\frac{2y-z}{3}+\frac{2z-x}{3}=\frac{x+y+z}{3}=3\)
\(S_{min}=3\) khi \(x=y=z=3\)
AM-GM thôi :))
\(M=1+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{xy}+2=3+\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}+\frac{x^2+y^2}{2xy}\)
Áp dụng BĐT AM-GM:
\(\frac{2xy}{x^2+y^2}+\frac{x^2+y^2}{2xy}\ge2\sqrt{\frac{2xy}{x^2+y^2}.\frac{x^2+y^2}{2xy}}=2\)
\(\frac{x^2+y^2}{2xy}\ge\frac{2xy}{2xy}=1\)
\(\Rightarrow VT\ge3+2+1=6\)
Dấu = xảy ra khi x=y
Điều kiện có 2 nghiệm phân biệt tự làm nha
Theo vi-et ta có:
\(\hept{\begin{cases}x_1+x_2=5\\x_1.x_2=m-2\end{cases}}\)
\(2\left(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\frac{1}{x_1}+\frac{1}{x_2}+\frac{2}{\sqrt{x_1.x_2}}\right)=9\)
\(\Leftrightarrow4\left(\frac{5}{m-2}+\frac{2}{\sqrt{m-2}}\right)=9\)
Làm nốt nhé
Câu 1:
M=\(\left(x^2+2xy+y^2\right)+\left(2x+2y\right)+1+\left(4x^2-4x+1\right)+2014\)
=\(\left(\left(x+y\right)^2+2\left(x+y\right)+1\right)+\left(2x-1\right)^2+2014\)
=\(\left(x+y+1\right)^2+\left(2x-1\right)^2+2014\ge2014\)
\(\Rightarrow M\ge2014\Leftrightarrow minM=2014\)
\(\Leftrightarrow\hept{\begin{cases}x+y+1=0\\2x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0,5\\y=1,5\end{cases}}\)
\(P=\frac{5}{x^2+y^2}+\frac{5}{2xy}+\frac{1}{2xy}=5\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(P\ge\frac{5.4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}=\frac{22}{\left(x+y\right)^2}=\frac{22}{9}\)
\(\Rightarrow P_{min}=\frac{22}{9}\) khi \(x=y=\frac{3}{2}\)
\(M=4xy+\frac{1}{x^2+y^2}+\frac{2}{xy}\)
\(=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{3}{2xy}+24xy-20xy\)
Áp dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\)
Áp dụng BĐT AM-GM, ta có:
\(\frac{3}{2xy}+24xy\ge12\)
Và: \(1\ge x+y\)
\(\Leftrightarrow1\ge\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow-20xy\ge-5\)
\(\Rightarrow M\ge4+12-5=11\)
\(''=''\Leftrightarrow x=y=\frac{1}{2}\)
Vậy...
\(M=\frac{1}{x^2+y^2}+\frac{1}{2xy}+4xy+\frac{1}{4xy}+\frac{5}{4xy}\)
\(M\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xy}}+\frac{5}{\left(x+y\right)^2}\)
\(M\ge\frac{4}{\left(x+y\right)^2}+\frac{5}{\left(x+y\right)^2}+2=\frac{9}{\left(x+y\right)^2}+2\ge\frac{9}{1}+2=11\)
\(\Rightarrow M_{min}=11\) khi \(x=y=\frac{1}{2}\)
\(P=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}\)
\(P\ge\frac{4}{x^2+y^2+2xy}+2\sqrt{\frac{4xy}{4xy}}+\frac{5}{\left(x+y\right)^2}=4+2+5=11\)
\(P_{min}=11\) khi \(x=y=\frac{1}{2}\)