Câu 3. (4 điểm) Cho nửa đường tròn (O,R), đường kính AB. Trên một nửa mặt phẳng
bờ AB có chứa nửa đường tròn, vẽ các tia tiếp tuyến Ax, By với đường tròn (O). Gọi
C là một điểm bất kỳ thuộc tia Ax (C khác A). Đường thẳng đi qua O và vuông góc
với CO, cắt tia By tại D. Gọi M là trung điểm đoạn CD.
a) (1,5 đ) Chứng minh AB là tiếp tuyến của đường tròn ngoại tiếp tam giác COD.
b) (1đ) Chứng minh CD là tiếp tuyến của đường tròn (O), với H là tiếp điểm.
c) (1đ) AH giao OC tại E, HB giao OD tại F. Chứng minh rằng độ dài EF không
đổi khi C di chuyển trên tia Ax.
d) (0,5đ) Tìm vị trí điểm C trên tia Ax sao diện tích tứ giác HEOF lớn nhất. Tính
giá trị lớn nhất đó theo R.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác CAOM có góc CAO+góc CMO=180 độ
nên CAOM là tứ giác nội tiếp
Tâm là trung điểm của OC
b: Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc COD=1/2*180=90 độ
AC+BD=CM+MD=CD
C là giao điểm 2 tiếp tuyến tại A và M \(\Rightarrow OC\) là trung trực AM
\(\Rightarrow E\) là trung điểm AM
Tương tự ta có OD là trung trực BM \(\Rightarrow F\) là trung điểm BM
\(\Rightarrow EF\) là đường trung bình tam giác ABM
\(\Rightarrow EF||AB\Rightarrow ONEF\) là hình thang (1)
Lại có O là trung điểm AB \(\Rightarrow OF\) là đường trung bình tam giác ABM
\(\Rightarrow OF=\dfrac{1}{2}AM=AE\)
Mà \(OF||AE\) (cùng vuông góc BM)
\(\Rightarrow AEFO\) là hình bình hành \(\Rightarrow\widehat{OFE}=\widehat{OAE}\)
Mà \(EN=AE=\dfrac{1}{2}AM\Rightarrow\Delta AEN\) cân tại E \(\Rightarrow\widehat{OAE}=\widehat{ANE}\)
\(\widehat{ANE}+\widehat{ONE}=180^0\Rightarrow\widehat{OFE}+\widehat{ONE}=180^0\)
Lại có \(\widehat{ONE}+\widehat{NEF}=180^0\) (2 góc trong cùng phía)
\(\Rightarrow\widehat{OFE}=\widehat{NEF}\)
\(\Rightarrow ONEF\) là hình thang cân
a, Theo tính chất 2 tt cắt nhau: \(AC=CH;BD=DH\Rightarrow AC+BH=CH+HD=CD\)
b, Vì \(AC=CH;CO.chung;\widehat{CAO}=\widehat{CHO}=90^0\) nên \(\Delta CAO=\Delta CHO\left(cgv-ch\right)\)
Do đó \(\widehat{AOC}=\widehat{COH}\) hay OC là p/g \(\widehat{AOH}\)
Tương tự: \(\widehat{BOD}=\widehat{DOH}\) hay OD là p/g \(\widehat{HOB}\)
\(\Rightarrow\widehat{COD}=\widehat{COH}+\widehat{HOD}=\dfrac{1}{2}\left(\widehat{AOH}+\widehat{HOB}\right)=90^0\\ \Rightarrow\Delta OCD\perp O\)
Do đó OCD nội tiếp đường tròn tâm là trung điểm CD
Gọi I là trung điểm CD
Xét hthang ABDC(AC//BD) có O là trung điểm AB, I là trung điểm CD nên OI là đtb ht ABDC
\(\Rightarrow OI//AC\\ \Rightarrow OI\perp AB\)
Vậy AB là tt đường tròn nt tg OCD
Tam giác OMN vuông tại O có OI ⊥ MN (tính chất tiếp tuyến)
Theo hệ thức lượng trong tam giác vuông, ta có:
O I 2 = MI.NI
Mà: MI = MA, NI = NB (chứng minh trên)
Suy ra : AM.BN = O I 2 = R 2
a) CE và EB là 2 tiếp tuyến cắt nhau tại E
⇒ EC = EB và CB ⊥ OE
Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D
⇒ DC = DA và AC ⊥ OD
Khi đó: AD + BE = DC + EC = DE
b: Xét (O) có
MC là tiếp tuyến
MA là tiếp tuyến
Do đó: MC=MA
Xét (O) có
NC là tiếp tuyến
NB là tiếp tuyến
Do đó: NC=NB
Ta có: MN=MC+NC
nên MN=MA+NB
a: góc CAO+góc CMO=180 độ
=>CAOM nội tiếp
góc DMO+góc DBO=180 độ
=>DMOB nội tiếp
b: Xét (O) có
CM,CA là tiếp tuyến
=>CM=CA và OC là phân giác của góc MOA(1)
Xét (O) có
DM,DB là tiếp tuyến
=>DM=DB và OD là phân giác của góc MOB(2)
Từ (1), (2) suy ra góc DOC=1/2*180=90 độ
Xét ΔDOC vuông tại O có OM là đường cao
nên CM*MD=OM^2
=>AC*BD=R^2