Cho tam giác ABC có AB = AC. Gọi H là trung điểm của BC.
a/ Chứng minh : Góc ABH = góc ACH.
b/ Chứng minh: AH là phân giác của góc BAC
c/ Chứng minh : AH vuông góc với BC tại H
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của \(\widehat{BAC}\)
c: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường phân giác
b: Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
c: Xét tứ giác AHCD có
M là trung điểm của AC
M là trung điểm của HD
Do đó: AHCD là hình bình hành
Suy ra: AD//HC
hay AD//BC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔAHB=ΔAHC
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
BH=CH
Do đó: ΔABH=ΔACH
Ta có: ΔABC cân tại A
ma AH là đường trung tuyến
nên AH là đường phân giác
b: Xét tứ giác ABMC có
H là trung điểm của AM
H là trung điểm của BC
Do đó: ABMC là hình bình hành
Suy ra: AB//MC
a: Xét ΔABC có AB=AC
nên ΔABC cân tại A
hay \(\widehat{ABH}=\widehat{ACH}\)