Tìm n sao cho số 13n + 3 là SCP
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2. Giả sử 13n+3=y213n+3=y2 (1)
Đặt y=13t+ry=13t+r với t,r∈Z;−6<r<6t,r∈Z;−6<r<6
Từ (1) ta có 13(n+1)−10=(13t+r)213(n+1)−10=(13t+r)2 (2)
⇒r2+10⋮13⇒r=±4⇒r2+10⋮13⇒r=±4
Từ (2) ta được n=13t2±8t+1n=13t2±8t+1 với t∈Z
Đặt \(13n+3=x^2\)
\(\Leftrightarrow13n-13=x^2-16\)
\(\Leftrightarrow13\left(n-1\right)=\left(x+4\right)\left(x-4\right)\)
Mà 13 là số nguyên tố nên \(\orbr{\begin{cases}x+4⋮13\\x-4⋮13\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=13k-4\\x=13k+4\end{cases}}\)
Sau đó thay x vào tìm n
Xét n chẵn : n = 2k ( k\(\in\)N)
\(\Rightarrow3^n+19=3^{2k}+19=a^2\left(a\inℕ\right)\)
\(\Rightarrow a^2-\left(3k\right)^2=19\)
\(\Rightarrow\left(a-3k\right)\left(a+3k\right)=19\)
Do \(a-3^k< a+3^k\)
\(\Rightarrow\hept{\begin{cases}a-3k=1\\a+3k=19\end{cases}\Rightarrow2\times3^k=18\Rightarrow3^k=19\Rightarrow3^k=3^2\Rightarrow k=2}\)
\(\Rightarrow n=4\)
Xét n lẻ \(n=1\Rightarrow3^n+19=22\) không là số chính phương
ĐÁP ÁN LÀ 2
TẠI MÌNH KO BIẾT CÂU GIẢI THÍCH MẸ MÌNH LÀM GIÁO VIÊN CÒN KO BIẾT KIA MÀ
\(2,\\ n=0\Leftrightarrow A=1\left(loại\right)\\ n=1\Leftrightarrow A=3\left(nhận\right)\\ n>1\Leftrightarrow A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\\ \Leftrightarrow A=n^2\left[\left(n^3\right)^{670}-1\right]+n\left[\left(n^3\right)^{667}-1\right]+\left(n^2+n+1\right)\)
Ta có \(\left(n^3\right)^{670}-1⋮\left(n^3-1\right)=\left(n-1\right)\left(n^2+n+1\right)⋮\left(n^2+n+1\right)\)
Tương tự \(\left(n^3\right)^{667}⋮\left(n^2+n+1\right)\)
\(\Leftrightarrow A⋮\left(n^2+n+1\right);A>1\)
Vậy A là hợp số với \(n>1\)
Vậy \(n=1\)
\(3,\)
Đặt \(A=n^4+n^3+1\)
\(n=1\Leftrightarrow A=3\left(loại\right)\\ n\ge2\Leftrightarrow\left(2n^2+n-1\right)^2\le4A\le\left(2n^2+n\right)^2\\ \Leftrightarrow4A=\left(2n^2+n\right)^2\\ \Leftrightarrow4n^2+4n^3+4=4n^2+4n^3+n^2\\ \Leftrightarrow n^2=4\Leftrightarrow n=2\)
Vậy \(n=2\)
Đặt13+3=y2(y∈N)13+3=y2(y∈N)⇒13(n−1)=y2−16⇔13(n−1)(y+4)(y−4)⇒13(n−1)=y2−16⇔13(n−1)(y+4)(y−4)
⇒(y+4)(y−4)⇒(y+4)(y−4)chia hết cho 13 mà 13 là số nguyên tố nên (y+4)(y+4)chia hết cho 13 hoặc (y-4) chia hết cho 13
=> y=13k+−4(k∈N)y=13k+−4(k∈N)
⇒13(n−1)=(13k+−4)2−16=13k(13k+−8)⇒13(n−1)=(13k+−4)2−16=13k(13k+−8)
⇒13k2+−8k+1⇒13k2+−8k+1
Vậy n=13k2+−8k+1(k∈N)n=13k2+−8k+1(k∈N)thì 13n+313n+3là số chính phương.
xin tiick