K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2021

Xét hệ gồm 2 mảnh đạn trong thời gian nổ, đây là hệ kín nên ta áp dụng định luật bảo toàn động lượng:  \(\overrightarrow{p_1}+\overrightarrow{p_2}=\overrightarrow{p_h}\) 

Trong đó: \(p_h=mv=195\left(kg.m/s\right)\)

\(p_1=m_1v_1=90\sqrt{3}\left(kg.m/s\right)\) 

Áp dụng định lý hàm cos: \(p_2=\sqrt{p_1^2+p_h^2-2p_1p_h\cos\left(60^0\right)}\) => v2=p2/m2 =..... tự tính

Gọi \(\beta\) là góc hợp bởi phương ngang và mảnh thứ 2 ta có: \(\cos\beta=\dfrac{p_h^2+p_1^2-p_2^2}{2p_hp_1}=.......\) tự tính nốt :D 

20 tháng 2 2021

Học 10a3 Tân Thông Hội dk bạn

4 tháng 10 2018

4 tháng 10 2019

Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.

Theo định luật bảo toàn động lượng  p → = p → 1 + p → 2

Với  p = m v = 2.250 = 500 ( k g m / s ) p 1 = m 1 v 1 = 1.500 = 500 ( k g m / s ) p 2 = m 2 v 2 = v 2 ( k g m / s )

  v → 1 ⊥ v → ⇒ p → 1 ⊥ p →   t h e o   p i t a g o   ⇒ p 2 2 = p 1 2 + P 2 ⇒ p 2 = p 1 2 + p 2 = 500 2 + 500 2 = 500 2 ( k g m / s )

⇒ v 2 = p 2 = 500 2 ( m / s ) M à   sin α = p 1 p 2 = 500 500 2 = 2 2 ⇒ α = 45 0

Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc  45 0  với vận tốc  500 2 ( m / s )

 

24 tháng 1 2017

27 tháng 8 2019

27 tháng 11 2018

Khi đạn nổ bỏ qua sức cản của không khí nên được coi như là một hệ kín.

Theo định luật bảo toàn động lượng:  p → = p → 1 + p → 2

+ Với  p = m v = 2.250 = 500 k g . m / s p 1 = m 1 v 1 = 1.500 = 500 k g . m / s p 2 = m 2 v 2 = v 2 k g . m / s

+ Vì v → 1 ⊥ v → 2 ⇒ p → 1 ⊥ p →  theo pitago

⇒ p 2 2 = p 1 2 + p 2 ⇒ p 2 = p 1 2 + p 2 = 500 2 + 500 2 = 500 2   k g m / s

+ Mà  sin α = p 1 p 2 = 500 500 2 = 2 2 ⇒ α = 45 0

Vậy mảnh hai chuyển động theo phương hợp với phương thẳng đứng một góc  45 ° với vận tốc 500 2 m / s (m/s)

Chọn đáp án A

30 tháng 1 2021

Gọi \(\overrightarrow{v};\overrightarrow{v_1};\overrightarrow{v_2}\) lần lượt là vận tốc của viên đạn ban đầu, của mảnh đạn 1kg và mảnh đạn 2kg sau khi bắn

Động lượng ban đầu của viên đạn là

\(\overrightarrow{p_0}=3\overrightarrow{v}\)

Động lượng sau của hệ là

\(\overrightarrow{p_s}=\overrightarrow{v_1}+2\overrightarrow{v_2}\)

Do động lượng được bảo toàn nên

\(\overrightarrow{p_0}=\overrightarrow{p_s}\) ⇒ \(3\overrightarrow{v}=\overrightarrow{v_1}+2\overrightarrow{v_2}\)

⇒ \(\overrightarrow{v_1}=3\overrightarrow{v}-2\overrightarrow{v_2}\)

⇒ v12 = 9.v2 + 4v22 - 12 . v . v2 . cos (45)

⇒ v12 = 9 . 472 + 4.502 - 12 . 47 . 50 . \(\dfrac{\sqrt{2}}{2}\)

⇒ v1 = 99,7 (m/s)

\(3\overrightarrow{v}=\overrightarrow{v_1}+2\overrightarrow{v_2}\) 

⇒ \(2\overrightarrow{v_2}=3\overrightarrow{v}-\overrightarrow{v_1}\)

⇒ cos \(\left(\overrightarrow{v};\overrightarrow{v_1}\right)\) = 0.789

⇒ \(\left(\overrightarrow{v};\overrightarrow{v_1}\right)\) = 37054'

Vậy mảnh đạn 1 bay theo chiều dương và hợp với phương thẳng đứng 1 góc 37054có độ lớn là 99,7 m/s

 

30 tháng 1 2021

Không có câu hỏi tình cgi hả bạn ?

28 tháng 2 2022

Tham khảo:

Giải thích các bước giải:

 m=2kg;v=250m/s;v1=500m/s;α1=600

Bảo toàn động lượng của viên đạn trước và sau khi nổ:

P→=P1→+P2→

ta thấy:

P=m.v=2.250=500kg.m/s

P1=m1.v1=22.500=500kg.m/s

Theo quy tắc hình bình hành ta có:

(P1→;P2→)=600^;P1=P⇒P1=P2=P

Vận tốc mảnh thứ 2:

{P1=P2m1=m2

{P1=P2m1=m2

⇒v1=v2=500m/s

28 tháng 2 2022

undefined

Bảo toàn động lượng: \(\overrightarrow{p}=\overrightarrow{p_1}+\overrightarrow{p_2}\)

Quy tắc hình bình hành:

\(p_2^2=p_1^2+p^2-2p_1\cdot p\cdot cos\left(\overrightarrow{p_1};\overrightarrow{p}\right)\)

    \(=\left(1\cdot500\right)^2+\left(2\cdot250\right)^2-2\cdot\left(1\cdot500\right)\cdot\left(2\cdot250\right)\cdot cos60^o\)

    \(=250000\) \(\Rightarrow p_2=500kg.m\)/s

Mảnh thứ hai bay theo góc:

\(sin\alpha=\dfrac{p_1\cdot cos\left(90-30\right)}{p_2}=\dfrac{1\cdot250\cdot cos60}{500}=0,25\)

\(\Rightarrow\alpha\approx14,5^o\)

1 tháng 5 2023

Áp dụng định lý sin: \(\dfrac{p}{sin90^0}=\dfrac{p_2}{sin30^0}\) (\(p_1\perp p_2\))

\(\Leftrightarrow\dfrac{mv}{sin90^0}=\dfrac{\dfrac{mv_2}{2}}{sin30^0}\)

\(\Leftrightarrow v_2=300\left(\dfrac{m}{s}\right)\)

Chọn A