K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 2 2021

làm giúp mình bài 5 và 6

Bài 3: 

a) Ta có: \(BC^2=25^2=625\)

\(AB^2+AC^2=20^2+15^2=625\)

Do đó: \(BC^2=AB^2+AC^2\)(=625)

Xét ΔABC có \(BC^2=AB^2+AC^2\)(cmt)

nên ΔABC vuông tại A(Định lí Pytago đảo)

b) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow HB^2=AB^2-AH^2=20^2-12^2=256\)

hay HB=16(cm)

Ta có: HB+HC=BC(H nằm giữa B và C)

\(\Leftrightarrow HC=BC-HB=25-16\)

hay HC=9(cm)

Vậy: HB=16cm; HC=9cm

24 tháng 10 2016

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+\frac{4}{3^3}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{3^4}+...+\frac{100}{3^{100}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(6A=3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)

\(4A=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)

\(4A=3-\frac{203}{3^{100}}< 3\)

\(A< \frac{3}{4}\left(đpcm\right)\)

  • 1 số bài toán tương tự:

CMR: \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{100}{4^{100}}< \frac{4}{9}\)

Dạng tổng quát: CMR: \(\frac{1}{k}+\frac{2}{k^2}+\frac{3}{k^3}+\frac{4}{k^4}+...+\frac{n}{k^n}< \frac{k}{\left(k-1\right)^2}\)(k;n \(\in\) N*; k > 1)

 

20 tháng 10 2021

Giúp mk vs 

20 tháng 10 2021

Làm giúp mình với nhé, nếu bạn nào mà không trả lời mình thì mình sẽ không kết bạn còn nếu giúp mình nhì mình sẽ làm bạn với bạn đó 😥

30 tháng 7 2021

các bạn khác k làm thì đừng cmt vô đây mấy bài của các bạn giải bị trôi

30 tháng 7 2021

1, \(\)BDT AM-GM

\(=>\sqrt{a^2+b^2}\ge\sqrt{2ab}\left(1\right)\)

tương tuqj \(=>\sqrt{b^2+c^2}\ge\sqrt{2bc}\left(2\right)\)

\(=>\sqrt{c^2+a^2}\ge\sqrt{2ac}\left(3\right)\)

cộng vế (1)(2)(3)

\(=>Vt=\sqrt{2}\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)=\sqrt{2021}\)

\(=>\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\dfrac{\sqrt{2021}}{\sqrt{2}}\)

\(=>\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\le a+b+c\)\(=>a+b+C\ge\dfrac{\sqrt{2021}}{\sqrt{2}}\)

đặt \(P=\dfrac{a^2}{b+c}+\dfrac{b^2}{c+a}+\dfrac{c^2}{a+b}\)

\(=>P\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\dfrac{a+b+c}{2}=\dfrac{1}{2}.\dfrac{\sqrt{2021}}{\sqrt{2}}\)

dấu"=" xảy ra<=>\(a=b=c=\dfrac{\sqrt{2021}}{3\sqrt{2}}\)

31 tháng 7 2021

C7, \(\dfrac{\left(b+c\right)\left(a^2+bc\right)}{b^2+bc+c^2}\ge\dfrac{\left(2\sqrt{bc}\right).\left(2a\sqrt{bc}\right)}{3\sqrt[3]{b^2.bc.c^2}}=\dfrac{4abc}{3abc}=\dfrac{4}{3}\left(1\right)\)

tương tự \(=>\dfrac{\left(a+c\right)\left(b^2+Ac\right)}{a^2+ac+c^2}\ge\dfrac{4}{3}\left(2\right)\)

\(=>\dfrac{\left(b+a\right)\left(c^2+ba\right)}{a^2+ab+b^2}\ge\dfrac{4}{3}\left(3\right)\)

cộng vế (1)(2)(3) \(=>P\ge4\)

dấu"=" xảy ra<=>a=b=c=1

31 tháng 7 2021

Khi Cauchy dưới mẫu \(b^2+bc+c^2\ge3\sqrt[3]{b^2\cdot bc\cdot c^2}\) thì đánh giá của phân thức bị đảo chiều. Do đó bài bạn đã bị ngược dấu ngay từ dòng đầu tiên :( 

17 tháng 11 2021

mik chỉ bt nhiêu đó thui, bn thông cảmundefined

6 tháng 3 2023

\(\dfrac{3}{4}-\dfrac{7}{5}+\dfrac{3}{10}\)

\(=\dfrac{15}{20}-\dfrac{28}{20}+\dfrac{6}{20}\)

\(=\dfrac{-7}{20}\)

6 tháng 3 2023

`3/4 - 7/5 +3/10`

`= 15/20 - 28/20 +6/20`

`=(15-28+6)/20`

`=-7/20`

cảm ơn bạn