K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2021

a, Trong △ABC có:

là trung điểm của BCE là trung điểm của AC.

⇒ DE là đường trung bình của △ABC.

⇒ DE = 1/2AB (1)

và: DE // AB (2)

Từ (1) suy ra: DE = 1/2 . 6 = 3.

b, Ta có: F là điểm đối xứng với D qua E nên:

DE = DF

⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo (1)

Từ (2),(3) suy ra: ABDF là hình bình hành.

c, Do ABDF là hình bình hành nên:

AF // BD (4) và: AF = BD

Mặt khác, ta có: là trung điểm của BC

=> BD = BC. Mà: AF = BD (cmt)

=> BC = AF (5).

Từ (4) và (5) suy ra: Tứ giác ADCF là hình bình hành.

Ta lại có: AB⊥AC (góc A = 90o)

và: AB // DF

⇒ AC⊥DF.

Vậy, hình bình hành ADCF có hai đường chéo vuông góc hay:

ADCF là hình thoi.

Ta có: ADCF là hình thoi ⇒AE = 1/2AC = 4.

Xét △ADE có: góc E = 90 (AC⊥DF)

⇒ AE+ DE= AD2 (Định lý Pythagore)

thay số: 4+ 32 = AD2

16 + 9 = AD2

25 = AD=> AD = 5 cm.

d, Để ADCF là hình vuông thì: AD⊥BC.

Mà: DC = DB = 1/2BC (gt) nên:

AD⊥BC khi và chỉ khi AD là đường trung trực của BC hay:

AB = AC

=> △ABC vuông cân tại A.

Vậy, điều kiện để ADCF là hình vuông là △ABC vuông cân tại A

a: Xét ΔABC vuông tại A có \(BC^2=AB^2+AC^2\)

hay BC=20(cm)

Xét ΔABC có 

D là trung điểm của BC

I là trung điểm của AB

Do đó: DI là đường trung bình

=>DI=AC/2=8(cm)

Ta có: ΔABC vuông tại A

mà AD là đường trung tuyến

nên AD=BC/2=10(cm)

b: Xét tứ giác ABKC có

D là trung điểm của BC

D là trung điểm của AK

Do dó: ABKC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABKC là hình chữ nhật

c: Xét tứ giác ABCE có 

AB//CE

AB=CE

Do đó: ABCE là hình bình hành

17 tháng 10 2016

a, △ABC có:  là trung điểm của BC là trung điểm của 

⇒DE là đường trung bình của 

b, Có: F là điểm đối xứng với D qua E

 (theo (2),(3)⇒ABDF là hình bình hành 

c, ABDF là hình bình hành 

Mặt khác  là trung điểm của  nên  

(4),(5)⇒ADCF là hình bình hành

Ta lại có: AB//DF⇒AC⊥DF

Vậy hình bình hành có hai đường chéo vuông góc hay là là hình thoi 

Có  là hình thoi 

 có  (AC⊥DF)

(Định lý Pythagore)

thay AE=4 và DE=3 tính được 

d, Để  là hình vuông thì 

Mà có  nên  khi và chỉ khi  là đường trung trực của 

Tức là  hay  vuông cân tại A

Điều kiện để  là hình vuông là  vuông cân tại A

sai thì thôi nha

17 tháng 10 2016

thank nhiều

Giải thích các bước giải:

ta có: Tam giác ABC vuông tại A (gt)

=> AB^2+AC^2=BC^2

      6^2+8^2     =BC^2

       36+64         =BC^2

        100             =BC^2

     =>BC=10cm

Tam giác ABC vuông tại A có Am là đg trung tuyến

=> AM=BC/2=10/2=5cm

15 tháng 3 2020

HÌNH VẼ THÌ BẠN TỰ VẼ NHÉ, HÌNH NÀY DỄ VẼ MÀ NHỈ. 

Câu a bạn V (Team BTS) làm rồi nên mình chỉ làm các câu còn lại thôi nhé.

b) Vì DM vuông góc AB, AC vuông góc AB (gt) => DM // AC.

=> DMCA là hình thang mà góc ADM = góc DAC = 90 độ.

Do đó ADMC là hình thang vuông.

c) Xét tam giác ABC ta có: DM // AC (cmt), M là trung điểm BC (AM là trung tuyến)

=> D là trung điểm của AB.

Tứ giác AEBM có AB và EM là hai đường chéo cắt nhau tại trung điểm D. => AEBM là hình bình hành. (1)

Lại xét tam giác AMB cân tại M (MA=MB) có MD là trung tuyến => MD cũng là đường cao=> ME vuông góc AB tại D. (2)

Từ (1) và (2) => AEBM là hình thoi.

d) Vì AEBM là hình thoi => AE // BM, AE = BM. 

Mà BM = MC =>  AE // MC, AE = MC. Do đó AEMC là hình bình hành.

e, Câu e mình không hiểu lắm vì thấy đề bài cứ sai sai làm sao. Mình chỉ chứng minh câu F đối xứng với E qua A thôi nhé.

Gọi I là giao điểm của AC và MF. Vì M đối xứng F qua AC => I là trung điểm MF, AC vuông góc MF tại I. 

Chứng minh tương tự câu c ta sẽ được AFMC là hình thoi => AF // MC, AF = MC. 

Mà AE // MC, AE = MC (cmt)

=> A, E, F thẳng hàng (tiên đề Ơ-clit) và A là trung điểm của EF (AE=AF)

Vậy F đối xứng E qua A.

31 tháng 10 2021

a: Ta có: I và D đối xứng nhau qua AB

nên AB là đường trung trực của DI

Suy ra: AD=AI

hay AB là tia phân giác của \(\widehat{IAD}\)

Ta có: I và E đối xứng nhau qua AC

nên AC là đường trung trực của IE

Suy ra: AI=AE

hay AC là tia phân giác của \(\widehat{EAI}\)

Ta có:  \(\widehat{EAD}=\widehat{EAI}+\widehat{DAI}\)

\(=2\left(\widehat{BAI}+\widehat{CAI}\right)\)

\(=2\cdot90^0=180^0\)

Suy ra:E,A,D thẳng hàng

mà AD=AE(=AI)

nên A là trung điểm của DE

30 tháng 12 2017

a) Ta có AD = 1 2 B C = 8 2 = 4 c m  

Xét  DADC có GF là đường trung bình

⇒   G F = 1 2 A D = 4 2 = 2 c m  

b) Chứng minh ADCE là hình thoi. Để ADCE là hình vuông thì điều kiện cần và đủ là E C D ^ = 90 0 ⇔ C 1 ^ = C 2 ^ = 45 0  

Û DABC vuông tại A.