Phương trình: có tập nghiệm là
.
(Các số viết cách nhau bởi dấu ";")
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
a: =>3x=6
=>x=2
b: =>4x=16
=>x=4
c: =>4x-6=9-x
=>5x=15
=>x=3
d: =>7x-12=x+6
=>6x=18
=>x=3
2:
a: =>2x<=-8
=>x<=-4
b: =>x+5<0
=>x<-5
c: =>2x>8
=>x>4
Lời giải:
Nếu $x\geq 0$ thì: $|-3x|=3x$. PT trở thành:
$4x+5=3x\Leftrightarrow x=-5<0$ (loại vì $x\geq 0$)
Nếu $x<0$ thì $|-3x|=-3x$. PT trở thành:
$4x+5=-3x\Leftrightarrow x=\frac{-5}{7}$ (thỏa mãn)
Vậy tập nghiệm của pt là $\left\{\frac{-5}{7}\right\}$
a) \(PT\Leftrightarrow3x-2x=2-3\Leftrightarrow x=-1\)
Vậy: \(S=\left\{-1\right\}\)
b) \(PT\Leftrightarrow-2x+3x=-7+22\Leftrightarrow x=15\)
Vậy: \(S=\left\{15\right\}\)
c) \(PT\Leftrightarrow8x-5x=3+12\Leftrightarrow3x=15\Leftrightarrow x=5\)
Vậy: \(S=\left\{5\right\}\)
d) \(PT\Leftrightarrow x+4x-2x=12+25-1\Leftrightarrow3x=36\Leftrightarrow x=12\)
Vậy: \(S=\left\{12\right\}\)
e) \(PT\Leftrightarrow x+2x+3x-3x=19+5\Leftrightarrow3x=24\Leftrightarrow x=8\)
Vậy: \(S=\left\{8\right\}\)
a)3x-2=2x-3
=>x=-1
b)7-2x=22-3x
=>x=15
c)8x-3=5x+12
=>3x=15
=>x=5
d)x-12+4x=25+2x-1
=>3x=12
=>x=4
e)x+2x+3x-19=3x+5
=>3x=24
=>x=8
`|4x+4|=|-3x|`
`<=>` $\left[ \begin{array}{l}4x+4=-3x\\4x+1=3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}7x=-4\\x=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac{-4}{7}\\x=-1\end{array} \right.$
Vậy `S={-1,-4/7}`
a) x−12+4x=25+2x−1x−12+4x=25+2x−1
⇔5x – 12 = 2x + 24
⇔5x – 2x = 24 + 12
⇔3x = 36
⇔x = 12
Vậy phương trình có nghiệm x = 12.
b) x+2x+3x−19=3x+5x+2x+3x−19=3x+5
⇔6x – 19 = 5x +3x
⇔3x= 24
⇔x= 8
Vậy phương trình có nghiệm x = 8.
a) x−12+4x=25+2x−1x−12+4x=25+2x−1
⇔5x – 12 = 2x + 24
⇔5x – 2x = 24 + 12
⇔3x = 36
⇔x = 12
Vậy x=12 là nghiệm của phương trình
b) x+2x+3x−19=3x+5x+2x+3x−19=3x+5
⇔6x – 19 = 5x +3x
⇔3x= 24
⇔x= 8
Vậy x=8 là nghiệm của phương trình
a) \(3x-11=0\)
\(\Rightarrow3x=11\Rightarrow x=\dfrac{11}{3}\approx3,667\)
b) \(12+7x=0\)
\(\Rightarrow7x=-12\Rightarrow x=-\dfrac{12}{7}\approx-1,714\)
c) \(10-4x=2x-3\)
\(\Rightarrow2x+4x=10+3\Rightarrow6x=13\Rightarrow x=\dfrac{13}{6}\approx2,167\)
\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)
\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)
\(\Leftrightarrow x^2-9-x^2+3x=0\)
\(\Leftrightarrow3x-9=0\)
\(\Leftrightarrow3x=9\)
\(\Leftrightarrow x=3\left(n\right)\)
Vậy \(S=\left\{3\right\}\)
\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)
\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)
\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)
\(\Leftrightarrow12x-9-12x+20+2x-7>0\)
\(\Leftrightarrow2x+4>0\)
\(\Leftrightarrow2x>-4\)
\(\Leftrightarrow x>-2\)
Thay x = 3 lần lượt vào từng vế của mỗi bất phương trình, ta được:
a) 2x + 3 = 2.3 + 3 = 9
Vậy x = 3 không là nghiệm của bất phương trình 2x + 3 < 9.
b) -4x = -4.3 = -12
2x + 5 = 2.3 + 5 = 11
-12 < 11 nên x = 3 không phải nghiệm của bất phương trình -4x > 2x + 5.
c) 5 – x = 5 – 3 = 2
3x – 12 = 3.3 – 12 = -3.
Vì 2 > -3 nên x = 3 là nghiệm của bất phương trình 5 – x > 3x – 12.
a,\(\sqrt{\left(3x-1\right)^2}=5=>|3x-1|=5=>\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b, \(\sqrt{4x^2-4x+1}=3=\sqrt{\left(2x-1\right)^2}=3=>\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c, \(\sqrt{x^2-6x+9}+3x=4=>|x-3|=4-3x\)
TH1: \(|x-3|=x-3< =>x\ge3=>x-3=4-3x=>x=1,75\left(ktm\right)\)
TH2 \(|x-3|=3-x< =>x< 3=>3-x=4-3x=>x=0,5\left(tm\right)\)
Vậy x=0,5...
d, đk \(x\ge-1\)
=>pt đã cho \(< =>9\sqrt{x+1}-6\sqrt{x+1}+4\sqrt{x+1}=12\)
\(=>7\sqrt{x+1}=12=>x+1=\dfrac{144}{49}=>x=\dfrac{95}{49}\left(tm\right)\)
a) Ta có: \(\sqrt{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow\left|3x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)
b) Ta có: \(\sqrt{4x^2-4x+1}=3\)
\(\Leftrightarrow\left|2x-1\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\2x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)
c) Ta có: \(\sqrt{x^2-6x+9}+3x=4\)
\(\Leftrightarrow\left|x-3\right|=4-3x\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=4-23x\left(x\ge3\right)\\x-3=23x-4\left(x< 3\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x+23x=4+3\\x-23x=4+3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{24}\left(loại\right)\\x=\dfrac{-4}{22}=\dfrac{-2}{11}\left(loại\right)\end{matrix}\right.\)
\(a,PT\Leftrightarrow8x^3-6x^2+4x-3=3x^3-36x^2+x-12\)
\(\Leftrightarrow5x^3+30x^2+3x+9=0\)
\(\Leftrightarrow x=-5,95...\)
\(b,PT\Leftrightarrow2x+22-3x^2-33x=6x-15x^2-4+10x\)
\(\Leftrightarrow12x^2-47x+26=0\)
<=> (3x - 2)(4x - 13) = 0
<=> x = 2/3 hoặc x = 13/4
c, Tách ra <=> (2x - 1)(2x - 5) = 0 <=> ...
\(\left(3x+12\right)\left(3x-3\right)=\left(3x+12\right)\left(4x-5\right)\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3\right)-\left(3x+12\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(3x-3-4x+5\right)=0\)
\(\Leftrightarrow\left(3x+12\right)\left(-x+2\right)=0\Leftrightarrow x=-4;x=2\)
Vậy tập nghiệm của phương trình là S = { -4 ; 2 }
( 3x + 12 )( 3x - 3 ) = ( 3x + 12 )( 4x - 5 )
<=> 9( x + 4 )( x - 1 ) - 3( x + 4 )( 4x - 5 ) = 0
<=> 3( x + 4 )[ 3( x - 1 ) - ( 4x - 5 ) ] = 0
<=> 3( x + 4 )( 3x - 3 - 4x + 5 ) = 0
<=> 3( x + 4 )( 2 - x ) = 0
<=> x = -4 hoặc x = 2
Vậy phương trình có tập nghiệm S = { -4 ; 2 }