Tìm số nguyên n để phân số sau cũng là số nguyên:
4n - 4 |
n + 2 |
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta đặt A=\(\dfrac{4n-2}{n-4}\)\(\Rightarrow A=\dfrac{4n-16+14}{n-4}=\dfrac{4\left(n-4\right)+14}{n-4}=4+\dfrac{14}{n-4}\)
Để A\(\in Z\) \(\Leftrightarrow4+\dfrac{14}{n-4}\in Z\) \(\Rightarrow\dfrac{14}{n-4}\in Z\) \(\Rightarrow14⋮\left(n-4\right)\Rightarrow n-4\in\left\{-14;-7;-2;-1;1;2;7;14\right\}\)
\(\Rightarrow n\in\left\{-10;-3;2;3;5;6;11;18\right\}\)
a: Để Q là phân số thì n+5<>0
hay n<>-5
b: Để Q là số nguyên thì \(4n⋮n+5\)
\(\Leftrightarrow n+5\in\left\{1;-1;2;-2;4;-4;5;-5;10;-10;20;-20\right\}\)
hay \(n\in\left\{-4;-6;-3;-7;-1;-9;0;-10;5;-15;15;-25\right\}\)
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
b) \(\frac{4n-3}{3n-1}\)là số nguyên
\(\Rightarrow4n-3⋮3n-1\Rightarrow12n-9⋮3n-1\)
\(\Rightarrow4\left(3n-1\right)-5⋮3n-1\Rightarrow3n-1\inƯ\left(5\right)=[\pm1;\pm5]\)
+3n-1=1\(\Rightarrow\)n=\(\frac{2}{3}\)(loại)
+3n-1=-1\(\Rightarrow\)n=0(TM)
+3n-1=5\(\Rightarrow\)n=2(TM)
+3n-1=-5\(\Rightarrow\)n=\(\frac{-4}{3}\)(loại)
TM là thỏa mãn
A=(4n+6-1)/(2n+3)=2(2n+3)/(2n+3) -1/(2n+3)
=2-1/(2n+3)
Vậy để A nguyên thì 2n+3 phải là ước của 1
=> 2n+3={-1; 1}
+/ 2n+3=-1 => 2n=-4 => n=-2
+/ 2n+3=1 => 2n=-2 => n=-1
Đs: n=-2; -1
a: Để A là số nguyên thì \(4n^2-1+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{1;0;2;-1\right\}\)
b: Để B là số nguyên thì \(3n^2+6n-7n-14+15⋮n+2\)
\(\Leftrightarrow n+2\in\left\{1;-1;3;-3;5;-5;15;-15\right\}\)
hay \(n\in\left\{-1;-3;1;-5;3;-7;13;-17\right\}\)
\(\frac{4n-4}{n+2}=\frac{4\left(n+2\right)-12}{n+2}=\frac{-12}{n+2}\)
\(\Rightarrow n+2\inƯ\left(-12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
tự lập bảng nhé !
Trả lời:
Ta có: \(\frac{4n-4}{n+2}=\frac{4\left(n+2\right)-12}{n+2}=\frac{4\left(n+2\right)}{n+2}-\frac{12}{n+2}=4-\frac{12}{n+2}\)
Để \(\frac{4n-4}{n+2}\)là số nguyên thì \(\frac{12}{n+2}\)cũng là số nguyên
\(\Rightarrow12⋮\left(n+2\right)\)hay \(n+2\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
Ta có bảng sau:
Vậy \(x\in\left\{-1;-3;0;-4;1;-5;2;-6;4;-8;10;-14\right\}\)thì \(\frac{4n-4}{n+2}\)là số nguyên