cho các số nguyên dương a , b thỏa mãn 2a ^2- b^2 / a^2+b^2=-1/13. Tìm dạng tối giản của a/b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^3-9y^2+9x-6y=1$
$\Leftrightarrow x^3+9x=9y^2+6y+1$
$\Leftrightarrow x(x^2+9)=(3y+1)^2$
Đặt $(x,x^2+9)=d$ thì suy ra $9\vdots d(*)$
$(3y+1)^2=x(x^2+9)\vdots d^2\Rightarrow 3y+1\vdots d$. Mà $(3y+1,3)=1$ nên $(3,d)=1(**)$
Từ $(*);(**)\Rightarrow d=1$, hay $x,x^2+9$ nguyên tố cùng nhau.
$\Rightarrow \frac{x}{x^2+9}$ là phấn số tối giản.
Ta có:
2a + 2021b = 2022a + b - a
Vậy phân số ban đầu có thể viết lại dưới dạng:
(2022a + b = a + 20206)/(3a + 2019b) -
= (2022a + b)/(3a + 2019b) + (20206
- a)/(3a + 2019b)
= 674 + (20206 - a)/(3a + 2019b)
Vì a, b là các số nguyên dương nên ta có:
0 < (20206 - a)/(3a + 2019b) < 1
Vậy phân số ban đầu không tối giản vì nó có thể viết dưới dạng tổng của một số nguyên và một phân số có tử số nhỏ hơn mẫu số.
Khúc đầu là: \(\dfrac{1}{a^4+b^2+2b^2}\) hay \(\dfrac{1}{a^4+b^2+2ab^2}\) ??
\(\dfrac{2a^2-b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow\dfrac{\left(2a^2+2b^2\right)-3b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow2-\dfrac{3b^2}{a^2+b^2}=-\dfrac{1}{13}\)
\(\Leftrightarrow\dfrac{b^2}{a^2+b^2}=\dfrac{9}{13}\)
\(\Rightarrow1-\dfrac{b^2}{a^2+b^2}=1-\dfrac{9}{13}=\dfrac{4}{13}\)
\(\Leftrightarrow\dfrac{a^2}{a^2+b^2}=\dfrac{4}{13}\)
\(\dfrac{a^2}{b^2}=\dfrac{4}{9}\Rightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{2}{3}\\\dfrac{a}{b}=-\dfrac{2}{3}\end{matrix}\right.\)