Tìm x,y thuộc N biết \(2^x+1=y^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(y+2⋮x;x+2⋮y\Rightarrow\left(x+2\right)\left(y+2\right)⋮xy\Rightarrow xy+2x+2y+4⋮xy\Rightarrow2x+2y+4⋮xy\)
\(\Rightarrow2\left(x+y+2\right)⋮xy\Rightarrow2⋮xy\Rightarrow xy\inƯ\left(2\right)=1;2\)
\(xy=1\Rightarrow x=1,y=1\Rightarrow y+2=1+2=3⋮x=1\Rightarrow y+2⋮x\)
\(x+2=1+2=3⋮y=1\Rightarrow x+2⋮y\)
\(\Rightarrow x=1,y=1\left(tm\right)\)
\(xy=2\Rightarrow x=1,y=2;x=2,y=1\Rightarrow x+2=1+2=3\)ko chia hết cho \(y=2\Rightarrow x+2\)ko chia hết cho y
\(\Rightarrow x=1,y=2\left(ktm\right)\Rightarrow x=2,y=1\left(ktm\right)\)
vậy x=1,y=1
a,Tìm x,y thuộc Z biết : 25-y^2=8(x-2009)^2
b,Tìm x,y thuộc N biết : (2008x+3y+1).(2008x+2008x+y)=225
Với \(y\ge5\):
\(VP=1!+2!+3!+...+y!\)
có \(k!=1.2.3.4.5.....k\)có chữ số tận cùng là \(0\)với \(k\ge5\).
Do đó \(VP\)có chữ số tận cùng là chữ số tận cùng của \(1!+2!+3!+4!=33\)
nên có chữ số tận cùng là \(3\).
Mà số chính phương không thể có chữ số tận cùng là \(3\)do đó phương trình vô nghiệm với \(y\ge5\).
Thử trực tiếp từng trường hợp \(1\le y\le4\)ta được các nghiệm là \(\left(1,1\right),\left(3,3\right)\).
a,Tìm x,y thuộc Z biết : 25-y2=8.(x-2009)2
b,Tìm x,y thuộc N biết : (2008.x+3y+1).(2008x+2008x+y)=225
2^x = y^2 - 1 = (y+1)(y-1)
đặt y + 1 = 2^m , y-1 = 2^n (m > n)
=> 2^m - 2^n = 2
=> 2^n (2^m-n - 1) = 2
=> 2^n = 2 và 2^m-n - 1 = 1 => n = 1; m = 2
Vậy y = 3 => x = 3
Làm hơi muộn thông cảm nha =='' :
2x + 1 = y2 \(\Rightarrow\)y2 - 1 = (y + 1)(y - 1) = 2x
Giả sử y + 1 = 2k ; y - 1 = 2m (k > m; m,k \(\in\)N)
\(\Rightarrow\)2k - 2m = y + 1 - y + 1 = 2
\(\Rightarrow\)2m (2k - m - 1) = 2
\(\Rightarrow\hept{\begin{cases}2^m=2\\2^{k-m}-1=1\end{cases}\Rightarrow\hept{\begin{cases}m=1\\k=2\end{cases}}}\)
\(\Rightarrow\)y = 3 \(\Rightarrow\)x = 3