Cho tam giác ABC vuoongtaij A biết cạnh BC 10cm cạnh AB bằng 6 cm .Tia phân giác của góc Bcắt AC tại E .Từ E kẻ EDvuông góc với BC tại D câu a Tính độ dài AC câu b Chứng minh tam giác ABE bằng tam giác DBE câu c Kẻ AH vuông BC [H thuộc BC ] .Chứng minh AD là tia phân giác của HAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔBCA vuông tại B, ta được:
\(AC^2=BC^2+AB^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Vậy: BC=8cm
a: BC=căn 13^2-5^2=12cm
Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
b: CE=KE
KE<EB
=>CE<EB
c: góc BCK+góc ACK=90 độ
góc HCK+góc AKC=90 độ
mà góc ACK=góc AKC
nên góc BCK=góc HCK
=>CK là phân giác của góc HCB
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: DA=DH
Xét ΔADE vuông tại A và ΔHDC vuông tại H có
DA=DH
\(\widehat{ADE}=\widehat{HDC}\)
Do đó: ΔADE=ΔHDC
Suy ra: AE=HC
Xét ΔBEC có BA/AE=BH/HC
nên AH//EC
Bài 1 :
a) Vì \(\Delta ABC\)cân tại A nên \(\widehat{B}=\widehat{C}\)
Xét \(\Delta ABC\)ta có :
\(\widehat{B}=\widehat{C}=\frac{\widehat{A}}{2}=\frac{110^0}{2}=55^0\)
b) Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(AB=AC\left(gt\right)\)
\(AH\)chung
=> \(\Delta AHB=\Delta AHC\left(ch-cgv\right)\)
=> \(\widehat{HAB}=\widehat{HAC}\)(hai góc tương ứng)
=> AH là tia phân giác của góc A
Bài 2 : a) Xét \(\Delta ABC\)ta có :
AB2 + BC2 = AC2(định lí)
=> 62 + 82 = AC2
=> 36 + 64 = AC2
=> AC2 = 100
=> AC = 10(cm)
b) Xét \(\Delta ABE\)và \(\Delta AHE\)có :
\(\widehat{B}=\widehat{H}=90^0\)
AE chung
\(\widehat{BAE}=\widehat{HAE}\left(gt\right)\)
=> \(\Delta ABE=\Delta AHE\left(ch-gn\right)\)
c) Vì \(\Delta ABE=\Delta AHE\)=> AB = AH => \(\Delta ABH\)cân tại A
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm
a) Xét tg ABC vuông tại A có :
BC2=AB2+AC2 (Pytago)
=> 102=62+AC2
=> AC2=64
=>AC=8cm
b) Xét tg ABE và DBE có :
BE-cạnh chung
\(\widehat{BAC}=\widehat{BDE}=90^o\)
\(\widehat{ABE}=\widehat{DBE}\left(gt\right)\)
=> Tg ABE=DBE(cạnh huyền-góc nhọn)
c)Do tg ABE=DBE(cmt)
=> AE=DE
=> Tg AED cân tại E
\(\Rightarrow\widehat{EAD}=\widehat{ADE}\left(tc\right)\)(1)
- Có : DE//AH(cùng vuông góc với BC)
\(\Rightarrow\widehat{ADE}=\widehat{DAH}\left(SLT\right)\)(2)
- Từ (1) và (2)\(\Rightarrow\widehat{EAD}=\widehat{DAH}\)
=> AD là tia phân giác góc HAC (đccm)
#H