Cho S = 2x3 mũ 0 + 2x3 mũ 1 + 2x3 mũ 2 +...+2x3 mũ 2020.Tìm chữ số tận cùng của S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: =54x(-100)=-5400
b: \(=18+\left(-200\right):4-8\cdot\left(-32\right)-1\)
=17-50+256
=-33+256
=223
a: =54x(-100)=-5400
b: \(=18+\left(-200\right):4-8\cdot\left(-32\right)-1\)
=17-50+256
=-33+256
=223
S = 1 x 2 + 2 x 3 + ...... + 99 x 100
3S = 1 x 2 x 3 + 2 x 3 x (4 - 1) + .... + 99 x 100 x (101 - 98)
3S = 1 x 2 x 3 + 2 x 3 x 4 - 1 x 2 x 3 + ..... + 99 x 100 x 101 - 98 x 99 x 100
3S = 99 x 100 x 101 = 999900
S = 999900 : 3 = 333300
Câu 2 bạn ghi rõ đề hơn đi rồi tớ làm cho
64+62x19 22x3-(110+8)32 72-36:32
=64+36x19 =4x3-(1+8)9 =49-36:9
=100x19 =12-(1+8)9 =49-4
=1900 =12-9.9 =45
=-6
Hok tốt!
mọi người ơi cho mình hỏi tại sao: x mũ 2 nhân với 9 lại viết thành x nhân với 3 mũ 2 chứ ko phải x nhân với 9 mũ 2 vậy
S = 30+32+34+...+32008
9S = 32+34+36+...+32010
9S - S = (32+34+36+...+32010) - (30+32+34+...+32008)
8S = 32010 - 30
8S = 32010 - 1
S = (32010 - 1) : 8
\(=\left(3^{2008}.3^2-1\right):8\)
\(=\left[\left(3^4\right)^{502}.9-1\right]:8\)
\(=\left[\overline{\left(...1\right)}^{502}.9-1\right]:8\)
\(=\left[\overline{\left(...1\right)}.9-1\right]:8\)
\(=\left[\overline{\left(...9\right)}-1\right]:8\)
\(=\overline{\left(...8\right)}:8\)
\(=\overline{...1}\)
Vậy S có c/s tận cùng là 1
Tính tổng S
\(S=3^0+3^1+...+3^{2007}+3^{2008}=\frac{3^{2009}-1}{2}\)(1)
(1)cái này bạn chưa hiểu mình Hướng giải chi tiết Bài tính Tổng dãy số
\(3^{2009}=3.9^{2008}=3.9^{2.1004}=3.81^{1004}\Rightarrow\)Tận cùng là 3
\(\Rightarrow3^{2009}-1\)có tận cùng =2
\(\frac{3^{2009}-1}{2}\) tận cùng là 1 hoặc 6
S không chia hết cho 2=> S tận cùng là 1
-------------Cách khác -----ghép số hạng
Để ý có 3^2+3^0=9+1=10
=> ghép cắp từ lớn xuống
3^2008+3^2006=3^2006(3^2+1)=10.3^2006
3^2007+3^2005=3^2005(3^2+1)=10+3^2006
Cuối cùng còn con 3^0 lẻ
3^0=1=>S có tận cùng 1
Ta có:
\(S=2.3^0+2.3+2\cdot3^2+...+2.3^{2020}\)
\(\Rightarrow3S=2.3+2.3^2+2.3^3+...+2.3^{2021}\)
\(\Rightarrow3S-S=2\left[\left(3+3^2+...+3^{2021}\right)-\left(1+3+...+3^{2020}\right)\right]\)
\(\Leftrightarrow2S=2\left(3^{2021}-1\right)\)
\(\Rightarrow S=3^{2021}-1\)
Vì \(3^{2021}=3^{2020}\cdot3=\overline{...1}\cdot3=\overline{...3}\)
\(\Rightarrow S=\overline{...3}-1=\overline{...2}\)
Vậy S có cstc là 2
(2*3)^0+(2*3)^1+(2*3)^2+...+(2*3)^2020
=6^0+6^1+6^2+...+6^2020
=...1+...6+...6+...+...+...6
=vì có 2019 số ...6
mà có các TH chữ số tận cùng như sau:...6;...2;...4;...8
mà 2019 chia 4 dư 3 nên số cuối cùng của tổng ...6+...6+...6+.....+...6=...4
ta có: ...1+...4=...5
vậy chữ số tận cùng củ S là 5
cái phần gạch ngang trên đầu bị lỗi nha,SORRY