K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔHAB có 

M là trung điểm của AH(gt)

O là trung điểm của BH(gt)

Do đó: MO là đường trung bình của ΔHAB(Định nghĩa đường trung bình của tam giác)

\(\Leftrightarrow\)MO//AB và \(MO=\dfrac{AB}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà AB//CK(AB//CD, K\(\in\)CD)

và AB=CD(hai cạnh đối trong hình chữ nhật ABCD)

nên MO//CK và \(MO=\dfrac{CD}{2}\)

mà \(CK=\dfrac{CD}{2}\)(K là trung điểm của CD)

nên MO//CK và MO=CK

Xét tứ giác MOCK có 

MO//CK(cmt)

MO=CK(cmt)

Do đó: MOCK là hình bình hành(Dấu hiệu nhận biết hình bình hành)

 

9 tháng 2 2021

giúp em câu c với ạ :<

21 tháng 4 2019

please help me

1 tháng 1 2017

Ta có DAOK = DCOH Þ OK =OH, DDOE = DBOF Þ OE = OF Þ EHFK là hình bình hành

2 tháng 8 2021

Ở đâu vậy bạn

a: Xét ΔABD có

E là trung điểm của AB

F là trung điểm của AD

Do đó: EF là đường trung bình

=>EF//DB

hay EFDB là hình thang

mà \(\widehat{FDB}=\widehat{EBD}\)

nên EFDB là hình thang cân

b: Ta có: ΔAEF cân tại A

mà AI là đường trung tuyến

nên AI là phân giác của góc EAF

hay AI là phân giác của góc PAQ

Xét tứ giác APIQ có 

\(\widehat{API}=\widehat{AQI}=\widehat{QAP}=90^0\)

Do đó: APIQ là hình chữ nhật

mà AI là tia phân giác của góc PAQ

nên APIQ là hình vuông

27 tháng 11 2023

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔOAK và ΔOCH có

\(\widehat{OAK}=\widehat{OCH}\)(hai góc so le trong, AK//CH)

OA=OC

\(\widehat{AOK}=\widehat{COH}\)(hai góc đối đỉnh)

Do đó: ΔOAK=ΔOCH

=>OK=OH

=>O là trung điểm của KH

Xét ΔOAE và ΔOCF có

\(\widehat{EAO}=\widehat{FCO}\)(hai góc so le trong, AE//CF)

OA=OC

\(\widehat{AOE}=\widehat{COF}\)

Do đó: ΔOAE=ΔOCF

=>OE=OF

=>O là trung điểm của EF

Xét tứ giác EKFH có

O là trung điểm chung của EF và KH

=>EKFH là hình bình hành