Cho \(x+y+z=0\) và \(xyz\ne0\) . Tính giá trị biểu thức:
\(A=\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{z^2+x^2-y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+y+z=0\Rightarrow x+y=-z\)
\(\Rightarrow\left(x+y\right)^2=\left(-z\right)^2\Rightarrow x^2+2xy+y^2=z^2\Rightarrow x^2+y^2-z^2=-2xy\)
Tương tự: \(y^2+z^2-x^2=-2yz,x^2+z^2-y^2=-2xz\)
\(\frac{1}{y^2+z^2-x^2}+\frac{1}{x^2+y^2-z^2}+\frac{1}{x^2+z^2-y^2}\)
\(=\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}=\frac{x+y+z}{-2xyz}=0\)
1)\(A=\frac{b\left(2a\left(a+5b\right)+\left(a+5b\right)\right)}{a-3b}.\frac{a\left(a-3b\right)}{ab\left(a+5b\right)}=\frac{b\left(a+5b\right)\left(2a+1\right).a\left(a-3b\right)}{\left(a-3b\right).ab\left(a+5b\right)}\)
\(A=2a+1\)=>lẻ với mọi a thuộc z=> dpcm
2) từ: x+y+z=1=> xy+z=xy+1-x-y=x(y-1)-(y-1)=(y-1)(x-1)
tường tự: ta có tử của Q=(x-1)^2.(y-1)^2.(z-1)^2=[(x-1)(y-1)(z-1)]^2=[-(z+y).-(x+y).-(x+y)]^2=Mẫu=> Q=1
3) kiểm tra lại xem đề đã chuẩn chưa
\(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\Rightarrow ab+bc+ca=1\)
\(\Rightarrow P\ge\frac{2a}{\sqrt{1+a^2}}+\frac{2b}{\sqrt{1+b^2}}+\frac{2c}{\sqrt{1+c^2}}\)
Áp dụng BĐT AM-GM: \(P=\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+a\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
\(\le a\left(\frac{1}{a+b}+\frac{1}{a+c}\right)+b\left(\frac{1}{4\left(a+b\right)}+\frac{1}{a-b}\right)-c\left(\frac{1}{4\left(b+c\right)}+\frac{1}{a-c}\right)=\frac{9}{4}\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(\frac{\sqrt{15}}{7};\sqrt{15};\sqrt{15}\right)\)
thay z = -(x+y) , y = -(z+x),... vao
=> Duoc bieu thuc trong do co 1/xy + 1/yz + 1/zx = (x+y+z)/xyz = 0
Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2}{xyz}\left(x+y+z\right)=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{1}{xyz}=4\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=2\)(vì \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}>0\))
Mặt khác, ta có : \(\frac{1}{x+y+z}=2\) .
\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
=> x+y = 0 hoặc y + z = 0 hoặc z + x = 0
Từ đó suy ra P = 0 (lí do vì x,y,z là các số mũ lẻ)
Bài \(1a.\) Tìm \(x,y,z\) biết \(x^2+4y^2=2xy+1\) \(\left(1\right)\) và \(z^2=2xy-1\) \(\left(2\right)\)
Cộng \(\left(1\right)\) và \(\left(2\right)\) vế theo vế, ta được:
\(x^2+4y^2+z^2=4xy\)
\(\Leftrightarrow\) \(x^2-4xy+4y^2+z^2=0\)
\(\Leftrightarrow\) \(\left(x-2y\right)^2+z^2=0\)
Do \(\left(x-2y\right)^2\ge0\) và \(z^2\ge0\) với mọi \(x,y,z\)
nên để thỏa mãn đẳng thức trên thì phải đồng thời xảy ra \(\left(x-2y\right)^2=0\) và \(z^2=0\)
\(\Leftrightarrow\) \(^{x-2y=0}_{z^2=0}\) \(\Leftrightarrow\) \(^{x=2y}_{z=0}\)
Từ \(\left(2\right)\), với chú ý rằng \(x=2y\) và \(z=0\), ta suy ra:
\(2xy-1=0\) \(\Leftrightarrow\) \(2.\left(2y\right).y-1=0\) \(\Leftrightarrow\) \(4y^2-1=0\) \(\Leftrightarrow\) \(y^2=\frac{1}{4}\) \(\Leftrightarrow\) \(y=\frac{1}{2}\) hoặc \(y=-\frac{1}{2}\)
\(\text{*)}\) Với \(y=\frac{1}{2}\) kết hợp với \(z=0\) \(\left(cmt\right)\) thì \(\left(2\right)\) \(\Rightarrow\) \(2.x.\frac{1}{2}-1=0\) \(\Leftrightarrow\) \(x=1\)
\(\text{*)}\) Tương tự với trường hợp \(y=-\frac{1}{2}\), ta cũng dễ dàng suy ra được \(x=-1\)
Vậy, các cặp số \(x,y,z\) cần tìm là \(\left(x;y;z\right)=\left\{\left(1;\frac{1}{2};0\right),\left(-1;-\frac{1}{2};0\right)\right\}\)
\(b.\) Vì \(x+y+z=1\) nên \(\left(x+y+z\right)^2=1\)
\(\Leftrightarrow\) \(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\) \(\left(3\right)\)
Mặt khác, ta lại có \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) \(\Rightarrow\) \(xy+yz+xz=0\) \(\left(4\right)\) (do \(xyz\ne0\))
Do đó, từ \(\left(3\right)\) và \(\left(4\right)\) \(\Rightarrow\) \(x^2+y^2+z^2=1\)
Vậy, \(B=1\)
x + y + z = 0 => x + y = -z <=> (x + y)2 = (-z^2) <=> x2 + y2 + 2xy = z2 <=> x2 + y2 - z2 = -2xy
CMTT: y2 + z2 - x2 = -2yz
z2 + x2 - y2 = -2xz
Khi đó, ta có: A = \(\frac{1}{-2yz}+\frac{1}{-2xy}+\frac{1}{-2xz}\)
A = \(-\frac{1}{2}\left(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}\right)=-\frac{1}{2}\cdot\frac{x+y+z}{xyz}=-\frac{1}{2}.0=0\)
Ta có: \(x+y+z=0\Rightarrow y+z=-x\Leftrightarrow\left(y+z\right)^2=\left(-x\right)^2\)
\(\Rightarrow y^2+z^2-x^2=-2yz\Rightarrow\frac{x^2}{y^2+z^2-x^2}=\frac{x^2}{-2yz}\)
Tương tự ta có: \(\frac{y^2}{z^2+x^2-y^2}=\frac{y^2}{-2xz};\frac{z^2}{x^2+y^2-z^2}=\frac{z^2}{-2xy}\)
\(\Rightarrow P=\frac{x^2}{-2yz}+\frac{y^2}{-2xz}+\frac{z^2}{-2xy}=\frac{x^3+y^3+z^3}{-2xyz}\)
\(=\frac{\left(x+y+z\right)^3-3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{-2xyz}\)
\(=\frac{0-3\left(-z\right)\left(-x\right)\left(-y\right)}{-2xyz}=\frac{3xyz}{-2xyz}=\frac{-3}{2}\)
Vậy \(P=\frac{-3}{2}\)